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1
Introduction

Optizelle [op-tuh-zel] is an open source software library designed to solve general purpose nonlinear optimiza-
tion problems of the form

Unconstrained Equality Constrained
min
x∈X

f(x) min
x∈X

f(x)

st g(x) = 0
Inequality Constrained Constrained
min
x∈X

f(x)

st h(x) � 0

min
x∈X

f(x)

st g(x) = 0
h(x) � 0

It features

• State of the art algorithms

– Unconstrained – steepest descent, preconditioned nonlinear-CG (Fletcher-Reeves, Polak-Ribiere,
Hestenes-Stiefel), BFGS, Newton-CG, SR1, trust-region Newton, Barzilai-Borwein two-point ap-
proximation

– Equality constrained – inexact composite-step SQP.

– Inequality constrained – primal-dual interior point method for cone constraints (linear, second-
order cone, and semidefinite), log-barrier method for cone constraints

– Constrained – any combination of the above

• Open source

– Released under the 2-Clause BSD License

– Free and ready to use with both open and closed sourced commercial codes

• Multilanguage support

– Interfaces to C++, MATLAB/Octave, and Python

• Robust computations and repeatability

– Can stop, archive, and restart the computation from any optimization iteration

– Combined with the multilanguage support, the optimization can be started in one language and
migrated to another. For example, archived optimization runs that started in Python can be
migrated and completed in C++.

• User-defined parallelism

– Fully compatible with OpenMP, MPI, or GPUs
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• Extensible linear algebra

– Supports user-defined vector algebra and preconditioners

– Enables sparse, dense, and matrix-free computations

– Ability to define custom inner products and compatibility with preconditioners such as algebraic
multigrid make Optizelle well-suited for PDE constrained optimization

• Sophisticated Control of the Optimization Algorithms

– Allows the user to insert arbitrary code into the optimization algorithm, which enables custom
heuristics to be embedded without modifying the source. For example, in signal processing ap-
plications, the optimization iterates could be run through a band-pass filter at the end of each
optimization iteration.

1.1 Licensing

Optizelle is copyrighted by OptimoJoe and licensed under the 2-Clause BSD License:

BSD 2-Clause License

Copyright 2013-2016 OptimoJoe.

Copyright 2012-2013 Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000

with Sandia Corporation, the U.S. Government retains certain rights in this software.

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are

permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of

conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of

conditions and the following disclaimer in the documentation and/or other materials

provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY

EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE

COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,

EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF

SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR

TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

In short, Optizelle is free to use in both open and closed sourced codes. If you do so, we ask that you provide
a citation or link to http://www.optimojoe.com.

1.2 Support

News, updates, and download information for Optizelle can be found at

http://www.optimojoe.com/products/optizelle

Our user forum can be found at

http://forum.optimojoe.com

Finally, if you are interested in paid support and consulting, please contact us at contact@optimojoe.com.
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1.3 Brief example

In order to see a short example of Optizelle in action, consider the unconstrained minimization of the Rosen-
brock function

min
x∈R2

(1− x1)2 + 100(x2 − x21)2.

In order to optimize this function, we use the following code and parameters, which generates the subsequent
output.

Language C++

Code // In this example, we setup and minimize the Rosenbrock function.

#include <vector>

#include <iostream>

#include <string>

#include <cstdlib>

#include "optizelle/optizelle.h"

#include "optizelle/vspaces.h"

#include "optizelle/json.h"

//---Objective0---

// Squares its input

template <typename Real>

Real sq(Real x){

return x*x;

}

// Define the Rosenbrock function where

//

// f(x,y)=(1-x)^2+100(y-x^2)^2

//

struct Rosenbrock

: public Optizelle::ScalarValuedFunction <double,Optizelle::Rm>

{

typedef Optizelle::Rm <double> X;

// Evaluation of the Rosenbrock function

double eval(X::Vector const & x) const {

return sq(1.-x[0])+100.*sq(x[1]-sq(x[0]));

}

// Gradient

void grad(

X::Vector const & x,

X::Vector & grad

) const {

grad[0]=-400.*x[0]*(x[1]-sq(x[0]))-2.*(1.-x[0]);

grad[1]=200.*(x[1]-sq(x[0]));

}

// Hessian-vector product

void hessvec(

X::Vector const & x,

X::Vector const & dx,

X::Vector & H_dx

) const {

H_dx[0]=(1200.*sq(x[0])-400.*x[1]+2)*dx[0]-400.*x[0]*dx[1];
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H_dx[1]=-400.*x[0]*dx[0]+200.*dx[1];

}

};

//---Objective1---

//---Preconditioner0---

// Define a perfect preconditioner for the Hessian

struct RosenHInv :

public Optizelle::Operator <double,Optizelle::Rm,Optizelle::Rm>

{

public:

typedef Optizelle::Rm <double> X;

typedef X::Vector X_Vector;

private:

X_Vector& x;

public:

RosenHInv(X::Vector& x_) : x(x_) {}

void eval(X_Vector const & dx,X_Vector & result) const {

auto one_over_det=1./(80000.*sq(x[0])-80000.*x[1]+400.);

result[0]=one_over_det*(200.*dx[0]+400.*x[0]*dx[1]);

result[1]=one_over_det*

(400.*x[0]*dx[0]+(1200.*x[0]*x[0]-400.*x[1]+2.)*dx[1]);

}

};

//---Preconditioner1---

int main(int argc,char* argv[]){

// Read in the name for the input file

if(argc!=2) {

std::cerr << "rosenbrock <parameters>" << std::endl;

exit(EXIT_FAILURE);

}

auto fname = argv[1];

//---State0---

// Generate an initial guess for Rosenbrock

auto x = std::vector <double> {-1.2, 1.};

// Create an unconstrained state based on this vector

Optizelle::Unconstrained <double,Optizelle::Rm>::State::t state(x);

//---State1---

//---Parameters0---

// Read the parameters from file

Optizelle::json::Unconstrained <double,Optizelle::Rm>::read(fname,state);

//---Parameters1---

//---Functions0---

// Create the bundle of functions

Optizelle::Unconstrained <double,Optizelle::Rm>::Functions::t fns;

fns.f.reset(new Rosenbrock);

fns.PH.reset(new RosenHInv(state.x));

//---Functions1---

//---Solver0---

// Solve the optimization problem

Optizelle::Unconstrained <double,Optizelle::Rm>::Algorithms
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::getMin(Optizelle::Messaging::stdout,fns,state);

//---Solver1---

//---Extract0---

// Print out the reason for convergence

std::cout << "The algorithm converged due to: " <<

Optizelle::OptimizationStop::to_string(state.opt_stop) <<

std::endl;

// Print out the final answer

std::cout << "The optimal point is: (" << state.x[0] << ’,’

<< state.x[1] << ’)’ << std::endl;

//---Extract1---

// Write out the final answer to file

Optizelle::json::Unconstrained <double,Optizelle::Rm>::write_restart(

"solution.json",state);

// Successful termination

return EXIT_SUCCESS;

}

Language Python

Code # In this example, we setup and minimize the Rosenbrock function.

import Optizelle

import numpy

import sys

#---Objective0---

# Squares its input

sq = lambda x:x*x

# Define the Rosenbrock function where

#

# f(x,y)=(1-x)^2+100(y-x^2)^2

#

class Rosenbrock(Optizelle.ScalarValuedFunction):

# Evaluation of the Rosenbrock function

def eval(self,x):

return sq(1.-x[0])+100.*sq(x[1]-sq(x[0]))

# Gradient

def grad(self,x,grad):

grad[0]=-400*x[0]*(x[1]-sq(x[0]))-2*(1-x[0])

grad[1]=200*(x[1]-sq(x[0]))

# Hessian-vector product

def hessvec(self,x,dx,H_dx):

H_dx[0] = (1200*sq(x[0])-400*x[1]+2)*dx[0]-400*x[0]*dx[1]

H_dx[1] = -400*x[0]*dx[0] + 200*dx[1]

#---Objective1---

#---Preconditioner0---

# Define a perfect preconditioner for the Hessian
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class RosenHInv(Optizelle.Operator):

def eval(self,state,dx,result):

x = state.x

one_over_det=1./(80000.*sq(x[0])-80000.*x[1]+400.)

result[0]=one_over_det*(200.*dx[0]+400.*x[0]*dx[1])

result[1]=(one_over_det*

(400.*x[0]*dx[0]+(1200.*x[0]*x[0]-400.*x[1]+2.)*dx[1]))

#---Preconditioner1---

# Read in the name for the input file

if len(sys.argv)!=2:

sys.exit("python rosenbrock.py <parameters>")

fname = sys.argv[1]

#---State0---

# Generate an initial guess for Rosenbrock

x = numpy.array([-1.2,1.0])

# Create an unconstrained state based on this vector

state=Optizelle.Unconstrained.State.t(Optizelle.Rm,x)

#---State1---

#---Parameters0---

# Read the parameters from file

Optizelle.json.Unconstrained.read(Optizelle.Rm,fname,state)

#---Parameters1---

#---Functions0---

# Create the bundle of functions

fns=Optizelle.Unconstrained.Functions.t()

fns.f=Rosenbrock()

fns.PH=RosenHInv()

#---Functions1---

#---Solver0---

# Solve the optimization problem

Optizelle.Unconstrained.Algorithms.getMin(

Optizelle.Rm,Optizelle.Messaging.stdout,fns,state)

#---Solver1---

#---Extract0---

# Print out the reason for convergence

print "The algorithm converged due to: %s" % (

Optizelle.OptimizationStop.to_string(state.opt_stop))

# Print out the final answer

print "The optimal point is: (%e,%e)" % (state.x[0],state.x[1])

#---Extract1---

# Write out the final answer to file

Optizelle.json.Unconstrained.write_restart(Optizelle.Rm,"solution.json",state)

Language MATLAB/Octave

Code % In this example, we setup and minimize the Rosenbrock function.

function rosenbrock(fname)
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% Read in the name for the input file

if nargin ~=1

error(’rosenbrock <parameters>’);

end

% Execute the optimization

main(fname);

end

%---Objective0---

% Squares its input

function z = sq(x)

z=x*x;

end

% Define the Rosenbrock function where

%

% f(x,y)=(1-x)^2+100(y-x^2)^2

%

function self = Rosenbrock()

% Evaluation of the Rosenbrock function

self.eval = @(x) sq(1.-x(1))+100.*sq(x(2)-sq(x(1)));

% Gradient

self.grad = @(x) [

-400.*x(1)*(x(2)-sq(x(1)))-2.*(1.-x(1));

200.*(x(2)-sq(x(1)))];

% Hessian-vector product

self.hessvec = @(x,dx) [

(1200.*sq(x(1))-400.*x(2)+2)*dx(1)-400.*x(1)*dx(2);

-400.*x(1)*dx(1)+200.*dx(2)];

end

%---Objective1---

%---Preconditioner0---

% Define a perfect preconditioner for the Hessian

function self = RosenHInv()

self.eval = @(state,dx) eval(state,dx);

end

function result = eval(state,dx)

x = state.x;

one_over_det=1./(80000.*sq(x(1))-80000.*x(2)+400.);

result = [

one_over_det*(200.*dx(1)+400.*x(1)*dx(2));

one_over_det*...

(400.*x(1)*dx(1)+(1200.*x(1)*x(1)-400.*x(2)+2.)*dx(2))];

end

%---Preconditioner1---

% Actually runs the program

function main(fname)

% Grab the Optizelle library

global Optizelle;

setupOptizelle();
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%---State0---

% Generate an initial guess for Rosenbrock

x = [-1.2;1.];

% Create an unconstrained state based on this vector

state=Optizelle.Unconstrained.State.t(Optizelle.Rm,x);

%---State1---

%---Parameters0---

% Read the parameters from file

state=Optizelle.json.Unconstrained.read(Optizelle.Rm,fname,state);

%---Parameters1---

%---Functions0---

% Create the bundle of functions

fns=Optizelle.Unconstrained.Functions.t;

fns.f=Rosenbrock();

fns.PH=RosenHInv();

%---Functions1---

%---Solver0---

% Solve the optimization problem

state = Optizelle.Unconstrained.Algorithms.getMin( ...

Optizelle.Rm,Optizelle.Messaging.stdout,fns,state);

%---Solver1---

%---Extract0---

% Print out the reason for convergence

fprintf(’The algorithm converged due to: %s\n’, ...

Optizelle.OptimizationStop.to_string(state.opt_stop));

% Print out the final answer

fprintf(’The optimal point is: (%e,%e)\n’,state.x(1),state.x(2));

%---Extract1---

% Write out the final answer to file

Optizelle.json.Unconstrained.write_restart( ...

Optizelle.Rm,’solution.json’,state);

end

Language Optizelle Parameters

Code "Optizelle" :{
"msg_level" :1,

"iter_max" :50,

"eps_trunc" :1e-12

},

Language Optizelle Output

Code iter f(x) ||grad|| ||dx||

1 2.42e+01 2.33e+02 .

2 4.73e+00 4.64e+00 3.81e-01
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. 4.73e+00 4.64e+00 1.00e+00

3 4.00e+00 1.74e+01 5.00e-01

4 3.34e+00 2.33e+01 5.00e-01

5 2.58e+00 8.77e+00 2.04e-01

. 2.58e+00 8.77e+00 4.91e-01

6 2.09e+00 8.48e+00 2.45e-01

7 1.65e+00 9.60e+00 2.45e-01

8 1.22e+00 5.00e+00 1.46e-01

9 9.64e-01 9.06e+00 2.13e-01

10 6.22e-01 1.77e+00 1.10e-01

. 6.22e-01 1.77e+00 3.44e-01

11 4.40e-01 4.42e+00 1.72e-01

12 2.81e-01 3.72e+00 1.68e-01

13 1.71e-01 3.60e+00 1.72e-01

14 9.43e-02 3.58e+00 1.80e-01

15 4.49e-02 2.47e+00 1.60e-01

16 1.82e-02 2.40e+00 1.58e-01

17 5.16e-03 1.02e+00 1.11e-01

18 8.94e-04 7.81e-01 9.41e-02

19 4.86e-05 1.17e-01 3.89e-02

20 2.49e-07 1.55e-02 1.36e-02

21 7.47e-12 4.80e-05 7.98e-04

22 7.06e-21 2.62e-09 5.63e-06

The algorithm converged due to: GradientSmall

The optimal point is: (1,1)

1.4 History

Optizelle originated in 2010 as a code called PEOpt (Parameter Estimation Using Optimization) written by
Joseph Young at Sandia National Laboratories. There, it was used as the computational driver for a variety
of both internal and external customers. Due to the scale of the problems involved and the nuances of high-
performance computing environments, PEOpt was designed specifically to integrate with large, existing code
bases as quickly and unobtrusively as possible. Later, Sandia approved the open source release of PEOpt on
two separate occasions in 2012 and 2013 under the 2-Clause BSD License. It was from this released code that
Joseph continued work on Optizelle through a new company called OptimoJoe.
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2
Installation

In the following chapter, we discuss how to download, build, and incorporate Optizelle into a new project.

2.1 Downloading

Optizelle can be downloaded from

http://www.optimojoe.com/products/optizelle

in a variety of precompiled packages. Here, we also provide direct access to our source code repository.

2.2 Installing and Uninstalling

The installation method depends on the platform, but generally involves opening the installer and following
the specified instructions

Windows Open the installer

macOS 1. Open the installer

2. Drag the Optizelle folder to Applications

3. Copy the file

/Applications/Optizelle/share/optizelle/com.optimojoe.optizelle.plist

to

/Library/LaunchAgents/

4. Close the Terminal application if open and reboot

Note, we summarize these steps and provide additional information in the ReadMe.txt
file provided after opening the installer.

Linux/Unix 1. Unzip the tar.gz file to a local directory or use the appropriate package manager
to install the rpm or deb package directly

2. Add /some/path/share/optizelle/matlab to the MATLABPATH

3. Add /some/path/share/optizelle/octave to the OCTAVE PATH

4. Add /some/path/share/optizelle/python to the PYTHONPATH

where /some/path denotes the Optizelle install location. By default, the deb and rpm

files install Optizelle to /usr/local/. Note, on most Linux distributions, we add a
variable to the path by adding

export SOMEVARIABLE=$SOMEVARIABLE:NEWPATH
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to the file ~/.bashrc. In other words, if we install Optizelle to /usr/local, we add
the following to text ~/.bashrc

export MATLABPATH=$MATLABPATH:/usr/local/share/optizelle/matlab

export OCTAVE_PATH=$OCTAVE_PATH:/usr/local/share/optizelle/octave

export PYTHONPATH=$PYTHONPATH:/usr/local/share/optizelle/python

Remember to execute source ~/.bashrc on all active shells, log out and back in, or
reboot for the changes to take affect.

Similar to installation, how we uninstall Optizelle depends on the platform

Windows Click the menus Start → Settings → System → Apps & features → Optizelle →
Uninstall

macOS 1. Drag the folder /Applications/Optizelle to the trash

2. Drag the file /Library/LaunchAgents/com.optimojoe.optizelle.plist to the
trash

Linux/Unix 1. When installed locally using the tar.gz package, delete the installation folder

2. When installed using the rpm or deb packages, use the package manager to remove
Optizelle

3. Delete any modifications to the path made in the file ~/.bashrc or other similar
configuration file

2.3 Dependencies

Depending on its configuration, Optizelle uses the following software packages

Package Version License C++ Python MATLAB Octave Docs Windows
Optizelle 1.2.0 BSD X X X X X X
JsonCpp 0.10.6 Public X X X X X
BLAS/LAPACK 3.5.0 BSD X X X X X
CMake 3.1 BSD X X X X X X
WiX 3.10 MS-RL X
GCC 4.9 GPL X X X X X
TeX Live 2014 Various X
Python 2.7 Python X
NumPy 1.10 BSD X
MATLAB R2016a Custom X
JSONlab 1.0-RC1 BSD X X
Octave 4.0 GPL X

Note, we generally depend on GCC for both its C++ and Fortran compiler, but an alternative compiler such
as Clang works as well. Since we do not modify GCC, the GCC Runtime Library Exception applies. In
addition, Optizelle remains compatible with most high-performance varieties of BLAS and LAPACK.

2.4 Building

Optizelle uses CMake as its build system. On Linux, Unix, macOS, Cygwin, or MSYS, execute the following
commands from the base Optizelle directory:

1. mkdir build

2. cd build

3. ccmake ..

4. Configure the build.
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5. make

On Windows, if not using Cygwin or MSYS, execute the following commands:

1. Using Windows Explorer, create a directory called build in the base Optizelle directory.

2. Run cmake-gui.exe

3. Set the source directory to the base Optizelle directory.

4. Set the build directory to the build folder created above.

5. Configure the build.

6. Build the code (make with Cygwin or MSYS.)

Rather than using ccmake, we can also run cmake directly in order to configure the build. This allows us to
skip the CMake menu system and configure Optizelle directly, which can be advantageous when compiling
Optizelle on multiple, but similar systems. In order to accomplish this, we execute a command such as

cmake \

-DENABLE_OPENMP:BOOL=ON \

-DENABLE_BUILD_JSONCPP:BOOL=ON \

-DJSONCPP_ARCHIVE:FILEPATH=/path/to/jsoncpp.zip \

-DENABLE_BUILD_BLAS_AND_LAPACK:BOOL=ON \

-DLAPACK_ARCHIVE:FILEPATH=/path/to/lapack.tgz \

-DENABLE_CPP_EXAMPLES:BOOL=ON \

-DENABLE_CPP_UNIT:BOOL=ON \

-DENABLE_PYTHON:BOOL=ON \

-DENABLE_PYTHON_EXAMPLES:BOOL=ON \

-DENABLE_PYTHON_UNIT:BOOL=ON \

-DENABLE_MATLAB:BOOL=ON \

-DMATLAB_EXECUTABLE:FILEPATH=/path/to/matlab \

-DMATLAB_INCLUDE_DIR:PATH=/path/to/extern/include \

-DMATLAB_LIBRARY:FILEPATH=/path/to/bin/glnxa64/libmex.so \

-DMATLAB_MEX_EXTENSION:STRING=mexa64 \

-DENABLE_MATLAB_EXAMPLES:BOOL=ON \

-DENABLE_MATLAB_UNIT:BOOL=ON \

-DENABLE_OCTAVE:BOOL=ON \

-DOCTAVE_EXECUTABLE:FILEPATH=/path/to/octave \

-DOCTAVE_INCLUDE_DIR:PATH=/path/to/octave \

-DOCTAVE_LIBRARY:FILEPATH=/path/to/liboctinterp.so \

-DENABLE_OCTAVE_EXAMPLES:BOOL=ON \

-DENABLE_OCTAVE_UNIT:BOOL=ON \

-DENABLE_BUILD_JSONLAB:BOOL=ON \

-DJSONLAB_ARCHIVE:FILEPATH=/path/to/jsonlab.zip \

..

where the actual paths, libraries, and archives depend on the individual system. Generally, we put this
command inside a shell script or batch file in order to make it easier to edit. As far as the available options,
we list them in the next section.

After building Optizelle, installation is as simple as executing

make install

from the CMake build directory using GNU Make, MSYS, or Cygwin. If using a different Make utility, call
it on the install target. For a complete list of installed files, see

install manifest.txt

located in the CMake build directory.
After installation via make install, we must also
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1. Add /some/path/share/optizelle/matlab to the MATLABPATH

2. Add /some/path/share/optizelle/octave to the OCTAVE PATH

3. Add /some/path/share/optizelle/python to the PYTHONPATH

where /some/path denotes the path found in the CMAKE INSTALL PREFIX configuration variable described
below. How we set environment variables depends on the platform

Windows Modify each environment variable via the sequence

1. Open File Explorer

2. Right click This PC

3. Click the menus Advanced System Settings→ System Properties→ Environ-
ment Variables → New (if the variable doesn’t exist) or Edit (if the variable
does exist)

4. Modify PATH with C:\some\path\lib and
C:\some\path\share\optizelle\thirdparty\lib

5. Modify MATLABPATH with C:\some\path\share\optizelle\matlab

6. Modify OCTAVE PATH with C:\some\path\share\optizelle\octave

7. Modify PYTHONPATH with C:\some\path\share\optizelle\python

where C:\some\path denotes the installation path found in the CMake variable CMAKE INSTALL PREFIX.

macOS Add a plist file to /Library/LaunchAgents or ~/Library/LaunchAgents. For exam-
ple

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"

"http://www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0"><dict>

<key>Label</key>

<string>Optizelle.startup</string>

<key>ProgramArguments</key>

<array>

<string>sh</string>

<string>-c</string>

<string>

launchctl setenv MATLABPATH $MATLABPATH:/some/path/share/optizelle/matlab

launchctl setenv OCTAVE_PATH $OCTAVE_PATH:/some/path/share/optizelle/octave

launchctl setenv PYTHONPATH $PYTHONPATH:/some/path/share/optizelle/python

</string>

</array>

<key>RunAtLoad</key>

<true/>

</dict></plist>
where /some/path denotes the installation path found in the CMake variable CMAKE INSTALL PREFIX.
Note, we must close the Terminal application and then reboot for the changes to take
affect.

Linux/Unix When using the Bash shell, we add

export MATLABPATH=$MATLABPATH:/some/path/share/optizelle/matlab

export OCTAVE_PATH=$OCTAVE_PATH:/some/path/share/optizelle/octave

export PYTHONPATH=$PYTHONPATH:/some/path/share/optizelle/python
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to ~/.bashrc where /some/path denotes the installation path found in the CMake
variable CMAKE INSTALL PREFIX. Note, we must also execute the command source

~/.bashrc on all active shells, log out and back in, or reboot for the changes to take
affect.

As a final note, CMake does not provide a native uninstallation process when installing Optizelle in this
manner. Nevertheless, on Linux, Unix, macOS, MSYS, or Cygwin, the command

xargs rm < install manifest.txt

will remove the installation. Also, don’t forget to remove each of the environment variables added in the
above installation process.

2.5 Configuring

Optizelle provides several different options within CMake in order to customize the build. We describe these
flags in the table below:

Flag CMAKE INSTALL PREFIX

Type PATH

Default Varies

Dependency None

Enables None

Autodetect? No

Description Install location of Optizelle.

Flag ENABLE DOCUMENTATION

Type BOOL

Default OFF

Dependency None

Enables PDFLATEX COMPILER, ENABLE A4 PAPER

Autodetect? No

Description Enables the build of the Optizelle manual from the LaTeX source. It builds a pdf file
of the manual.

Flag PDFLATEX COMPILER

Type FILEPATH

Default None

Dependency ENABLE DOCUMENTATION

Enables None

Autodetect? Yes

Description Complete path and executable for pdflatex.
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Flag ENABLE A4 PAPER

Type BOOL

Default OFF

Dependency ENABLE DOCUMENTATION

Enables None

Autodetect? No

Description When ON, the manual uses A4 paper. Otherwise, the manual uses Letter paper.

Flag ENABLE CPP

Type BOOL

Default OFF

Dependency None

Enables CMAKE CXX FLAGS, CMAKE BUILD TYPE, ENABLE OPENMP, ENABLE BUILD BLAS AND LAPACK,
ENABLE BUILD JSONCPP, BLAS LIBRARY, LAPACK LIBRARY, JSONCPP INCLUDE DIR, JSONCPP LIBRARY,
ENABLE CPP EXAMPLES, ENABLE CPP UNIT, ENABLE PYTHON, ENABLE MATLAB, ENABLE OCTAVE

Autodetect? No

Description Enables the Optizelle C++ library.

Flag CMAKE CXX FLAGS

Type STRING

Default None

Dependency ENABLE CPP

Enables None

Autodetect? No

Description C++ compiler specific flags.

Flag CMAKE BUILD TYPE

Type STRING

Default None

Dependency ENABLE CPP

Enables None

Autodetect? No

Description Generally set to either RELEASE or DEBUG. Set to RELEASE for production libraries. Set
to DEBUG to allow profiling through utilities such as OProfile.

Flag ENABLE OPENMP
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Type BOOL

Default OFF

Dependency ENABLE CPP

Enables None

Autodetect? No

Description Enable OpenMP/threaded support for the default, dense vector spaces. Note, many
BLAS and LAPACK libraries such as those from ATLAS benefit from OpenMP direc-
tives.

Flag ENABLE BUILD BLAS AND LAPACK

Type BOOL

Default OFF

Dependency ENABLE CPP

Enables LAPACK ARCHIVE

Autodetect? No

Description Builds BLAS and LAPACK from source in case an optimized version is not available.

Flag LAPACK ARCHIVE

Type FILEPATH

Default None

Dependency ENABLE BUILD BLAS AND LAPACK

Enables None

Autodetect? No

Description Location of the LAPACK archive downloaded from Netlib.

Flag ENABLE BUILD JSONCPP

Type BOOL

Default OFF

Dependency ENABLE CPP

Enables JSONCPP ARCHIVE

Autodetect? No

Description Builds JsonCpp from source.

Flag JSONCPP ARCHIVE

Type FILEPATH

Default None
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Dependency ENABLE BUILD JSONCPP

Enables None

Autodetect? No

Description Location of the JsonCpp archive downloaded from GitHub.

Flag BLAS LIBRARY

Type FILEPATH

Default None

Dependency ENABLE CPP

Enables None

Autodetect? Yes

Description A semicolon separated list of the complete path and library used to provide BLAS. This
must include all required libraries in order to successfully compile a BLAS dependent
application. For example, using ATLAS BLAS, one possible entry is:

/usr/lib/libf77blas.a;/usr/lib/libatlas.a

Flag LAPACK LIBRARY

Type FILEPATH

Default None

Dependency ENABLE CPP

Enables None

Autodetect? Yes

Description A semicolon separated list of the complete path and library used to provide LA-
PACK. This must include all required libraries, except for BLAS libraries specified
in BLAS LIBRARY, in order to successfully compile a LAPACK dependent application.
For example, using ATLAS LAPACK, one possible entry is:

/usr/lib/liblapack.a;/usr/lib/libgfortran.a

Note, this example assumes that we include libatlas.a in our BLAS LIBRARY filepath.

Flag JSONCPP INCLUDE DIR

Type PATH

Default None

Dependency ENABLE CPP

Enables None

Autodetect? Yes

Description A path that indicates where the jsoncpp headers have been installed. The actual
headers must be found in $JSONCPP_INCLUDE_DIR/json/
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.

Flag JSONCPP LIBRARY

Type FILEPATH

Default None

Dependency ENABLE CPP

Enables None

Autodetect? Yes

Description Complete path and library for JsonCpp.

Flag ENABLE CPP EXAMPLES

Type BOOL

Default OFF

Dependency ENABLE CPP

Enables None

Autodetect? No

Description Enables the build and installation of simple examples that demonstrate the use of
Optizelle.

Flag ENABLE CPP UNIT

Type BOOL

Default OFF

Dependency ENABLE CPP

Enables None

Autodetect? No

Description Enables the build of unit tests that help validate the Optizelle code. Execute these
unit tests by running ctest in the CMake build directory.

Flag ENABLE PYTHON

Type BOOL

Default OFF

Dependency ENABLE CPP

Enables PYTHON INCLUDE DIR, PYTHON LIBRARY, PYTHON EXECUTABLE, ENABLE PYTHON EXAMPLES,
ENABLE PYTHON UNIT

Autodetect? No

Description Enables the build of the Python wrappers for Optizelle.
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Flag PYTHON INCLUDE DIR

Type FILEPATH

Default None

Dependency ENABLE PYTHON

Enables None

Autodetect? Yes

Description A path that indicates where the Python 2.7 headers have been installed. We do not
prefix these headers, so we look directly in the directory provided here.

Flag PYTHON LIBRARY

Type FILEPATH

Default None

Dependency ENABLE PYTHON

Enables None

Autodetect? Yes

Description Complete path and library for Python 2.7.

Flag PYTHON EXECUTABLE

Type FILEPATH

Default None

Dependency ENABLE PYTHON

Enables None

Autodetect? Yes

Description Complete path and executable for Python 2.7.

Flag ENABLE PYTHON EXAMPLES

Type BOOL

Default OFF

Dependency ENABLE PYTHON

Enables None

Autodetect? No

Description Enables the build and installation of simple examples that demonstrate the use of the
Python wrappers for Optizelle.

Flag ENABLE PYTHON UNIT

Type BOOL

21



Default OFF

Dependency ENABLE PYTHON

Enables None

Autodetect? No

Description Enables the build of unit tests that help validate the Python wrappers for the Optizelle
code. Execute these unit tests by running ctest in the CMake build directory.

Flag ENABLE MATLAB

Type BOOL

Default OFF

Dependency ENABLE CPP

Enables MATLAB MEX EXTENSION, MATLAB INCLUDE DIR, MATLAB LIBRARY, MATLAB EXECUTABLE,
ENABLE BUILD JSONLAB, JSONLAB DIR,
ENABLE MATLAB EXAMPLES, ENABLE MATLAB UNIT

Autodetect? No

Description Enables the build of the MATLAB wrappers for Optizelle.

Flag MATLAB MEX EXTENSION

Type STRING

Default None

Dependency ENABLE MATLAB

Enables None

Autodetect? No

Description Extension of mex files on the system. This can be found by typing in the command
’mexext’ inside of MATLAB.

Flag MATLAB INCLUDE DIR

Type FILEPATH

Default None

Dependency ENABLE MATLAB

Enables None

Autodetect? Yes

Description Path that indicates where the MATLAB header mex.h has been installed. We do not
prefix these headers, so we look directly in the directory provided here. Generally, this
is generally the extern/include directory inside the primary MATLAB directory.

Flag MATLAB LIBRARY
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Type FILEPATH

Default None

Dependency ENABLE MATLAB

Enables None

Autodetect? Yes

Description Complete path and library for MATLAB, mex. Sometimes, we have to include the
mx library as well. If compilation fails and there are several undefined symbols with
prefixed with mx, then add the mx library and separate it from mex with a semicolon.
Generally, these libraries are generally found nested within the bin directory in the
primary MATLAB folder.

Flag MATLAB EXECUTABLE

Type FILEPATH

Default None

Dependency ENABLE MATLAB

Enables None

Autodetect? No

Description Complete path and executable for MATLAB.

Flag ENABLE MATLAB EXAMPLES

Type BOOL

Default OFF

Dependency ENABLE MATLAB

Enables None

Autodetect? No

Description Enables the build and installation of simple examples that demonstrate the use of the
MATLAB wrappers for Optizelle.

Flag ENABLE MATLAB UNIT

Type BOOL

Default OFF

Dependency ENABLE MATLAB

Enables None

Autodetect? No

Description Enables the build of unit tests that help validate the MATLAB wrappers for the Op-
tizelle code. Execute these unit tests by running ctest in the CMake build directory.
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Flag ENABLE OCTAVE

Type BOOL

Default OFF

Dependency ENABLE CPP

Enables OCTAVE INCLUDE DIR, OCTAVE LIBRARY, OCTAVE EXECUTABLE,
ENABLE BUILD JSONLAB, JSONLAB DIR,
ENABLE OCTAVE EXAMPLES, ENABLE OCTAVE UNIT

Autodetect? No

Description Enables the build of the Octave wrappers for Optizelle.

Flag OCTAVE INCLUDE DIR

Type FILEPATH

Default None

Dependency ENABLE OCTAVE

Enables None

Autodetect? Yes

Description Path that indicates where the Octave header mex.h has been installed. We do not
prefix these headers, so we look directly in the directory provided here. Generally, this
is the folder called octave-x.x.x/octave inside the system include directory where
x.x.x denotes the version number.

Flag OCTAVE LIBRARY

Type FILEPATH

Default None

Dependency ENABLE OCTAVE

Enables None

Autodetect? Yes

Description Complete path and library for Octave, octinterp. Generally, this library is found
nested within the octave directory inside the system lib directory.

Flag OCTAVE EXECUTABLE

Type FILEPATH

Default None

Dependency ENABLE OCTAVE

Enables None

Autodetect? No

Description Complete path and executable for Octave.
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Flag ENABLE OCTAVE EXAMPLES

Type BOOL

Default OFF

Dependency ENABLE OCTAVE

Enables None

Autodetect? No

Description Enables the build and installation of simple examples that demonstrate the use of the
Octave wrappers for Optizelle.

Flag ENABLE OCTAVE UNIT

Type BOOL

Default OFF

Dependency ENABLE OCTAVE

Enables None

Autodetect? No

Description Enables the build of unit tests that help validate the Octave wrappers for the Optizelle
code. Execute these unit tests by running ctest in the CMake build directory.

Flag ENABLE BUILD JSONLAB

Type BOOL

Default OFF

Dependency ENABLE MATLAB or ENABLE OCTAVE

Enables JSONLAB ARCHIVE

Autodetect? No

Description Builds jsonlab from source.

Flag JSONLAB ARCHIVE

Type FILEPATH

Default None

Dependency ENABLE BUILD JSONLAB

Enables None

Autodetect? No

Description Location of the json archive downloaded from GitHub.

Flag JSONLAB DIR
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Type PATH

Default None

Dependency ENABLE MATLAB or ENABLE OCTAVE

Enables None

Autodetect? Yes

Description A path that indicates where the jsonlab library has been installed. This is automati-
cally set when ENABLE BUILD JSONLAB is enabled.

2.6 Platform Specific Configuration

Due to a variety of platform specific quirks, some additional compilation flags may be necessary. In order to
use these flags, place them in the CMAKE CXX FLAGS variable, separated by spaces, in the CMake configuration.

Flag -include math.h

Platform Windows

Interface Python

Indication During compilation, error: ’::hypot’ has not been declared

Description Fixes a bug inside of Python where hypot has been renamed

Flag -DMS WIN64

Platform Windows

Interface Python

Indication During compilation, undefined reference to ‘ imp Py InitModule4’

Description Tells Python to use Windows 64-bit specific code
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3
Basic API

We organize Optizelle’s algorithms into four different categories:

Unconstrained Equality Constrained
min
x∈X

f(x) min
x∈X

f(x)

st g(x) = 0
Inequality Constrained Constrained
min
x∈X

f(x)

st h(x) � 0

min
x∈X

f(x)

st g(x) = 0
h(x) � 0

Since these formulations necessitate different algorithms, we segregate the overall structure of Optizelle and
the algorithms themselves into these categories. In order to optimize these formulations, we follow the general
procedure:

1. Import Optizelle

2. Import or define the appropriate vector spaces

3. Define the objective function

4. (Optional) Define the constraints

5. (Optional) Define the preconditioners

6. Create the optimization state

7. Set the optimization parameters

8. Accumulate the functions

9. Call the optimization solver

10. Extract the solution

11. Compile/run the program

We discuss how to implement each of the above steps below.

3.1 Import Optizelle

Each interface uses its own method to import Optizelle:

Language C++
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Code #include "optizelle/optizelle.h"

#include "optizelle/vspaces.h"

#include "optizelle/json.h"

Language Python

Code import Optizelle

Language MATLAB/Octave

Code global Optizelle

setupOptizelle();

In C++, we always require optizelle/optizelle.h, but only require optizelle/json.h when working
with JSON and optizelle/vspaces.h when using our default vector spaces such as Optizelle::Rm and
Optizelle::SQL. In Python, we simply need to include the Optizelle module and everything else is auto-
matically imported. Finally, in MATLAB/Octave, we encapsulate all of the required functions in the global
variable Optizelle.

3.2 Import or define the appropriate vector spaces

In the optimization problems

Unconstrained Equality Constrained
min
x∈X

f(x) min
x∈X

f(x)

st g(x) = 0
Inequality Constrained Constrained
min
x∈X

f(x)

st h(x) � 0

min
x∈X

f(x)

st g(x) = 0
h(x) � 0

we require that

f :X → R
g :X → Y

h :X → Z.

Here, the spaces X, Y , and Z denote vector spaces, more specifically, Hilbert spaces. For most problems,
these vector spaces just denote Rm, but we also allow these vector spaces to be spaces of functions such as
L2(Ω) or matrices such as Rm×n as long as they contain the necessary operations that we describe in the
section Customized vector spaces. A vector space consists of two separate pieces: the actual vector and the
operations required to compute on this vector. In Optizelle, we maintain this separation. For Rm, we provide
a reasonable implementation of the vector space with the following:

Language C++

Vector std::vector

Operations Optizelle::Rm

Language C++
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Vector numpy.array

Operations Optizelle.Rm

Language MATLAB/Octave

Vector [] (column vector)

Operations Optizelle.Rm

To be precise, each of these vector spaces uses the inner product 〈x, y〉 = xT y and defines inequalities pointwise,
x � y ⇐⇒ xi ≥ yi for all 1 ≤ i ≤ m. Note, we don’t require users to use these vector operations in their
code. Simply, if we’re happy using the above vectors, we can use these operations exclusively in Optizelle and
forget their details.

3.3 Define the objective function

In the optimization problems

Unconstrained Equality Constrained
min
x∈X

f(x) min
x∈X

f(x)

st g(x) = 0
Inequality Constrained Constrained
min
x∈X

f(x)

st h(x) � 0

min
x∈X

f(x)

st g(x) = 0
h(x) � 0

the function f : X → R denotes the objective function. Note, we restrict ourselves to scalar-valued functions
and do not consider multi-objective optimization problems. In order to optimize with this function, we require
information about its evaluation and derivatives. Specifically, we require its evaluation, f(x), and gradient,
∇f(x). In order to use second-order algorithms, we also require the Hessian-vector product, ∇2f(x)δx. In
the case that f : Rm → R, we can obtain each of these quantities from its partial derivatives. Specifically, we
write

f(x) = f(x1, . . . , xm).

Then, we have that

∇f(x) =


∂f
∂x1

(x)
...

∂f
∂xm

(x)

 ,

∇2f(x)δx =


∂f

∂x11
(x) . . . ∂f

∂x1m
(x)

...
. . .

...
∂f

∂xm1
(x) . . . ∂f

∂xmm
(x)

 δx.
In code, we specify this function as:

Language C++

Structure Optizelle::ScalarValuedFunction

Interface Inheritance

Code namespace Optizelle{

// A scalar valued function interface, f : X -> R

template <

typename Real,

template <typename> class XX
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>

struct ScalarValuedFunction {

// Create some type shortcuts

typedef XX <Real> X;

typedef typename X::Vector Vector;

// <- f(x)

virtual Real eval(Vector const & x) const = 0;

// grad = grad f(x)

virtual void grad(Vector const & x,Vector & grad) const = 0;

// H_dx = hess f(x) dx

virtual void hessvec(Vector const & x,Vector const & dx,Vector & H_dx)

const = 0;

// Allow a derived class to deallocate memory

virtual ~ScalarValuedFunction() {}

};

}

Language Python

Structure Optizelle.ScalarValuedFunction

Interface Inheritance

Code class ScalarValuedFunction(object):

"""A simple scalar valued function interface, f : X -> R"""

def _err(self,fn):

"""Produces an error message for an undefined function"""

raise Exception.t("%s function is not defined in a " % (fn) +

"ScalarValuedFunction")

def eval(self,x):

"""<- f(x)"""

_err(self,"eval")

def grad(self,x,grad):

"""<- grad f(x)"""

_err(self,"grad")

def hessvec(self,x,dx,H_dx):

"""<- hess f(x) dx"""

_err(self,"grad")

Language MATLAB/Octave

Structure Optizelle.ScalarValuedFunction

Interface Members present
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Code % A simple scalar valued function interface, f : X -> R

err_svf=@(x)error(sprintf( ...

’The %s function is not defined in a ScalarValuedFunction.’,x));

Optizelle.ScalarValuedFunction = struct( ...

’eval’,@(x)err_svf(’eval’), ...

’grad’,@(x)err_svf(’grad’), ...

’hess_vec’,@(x,dx)err_svf(’hess_vec’));

Note, we require that the Hessian-vector product always be present. If one is not available, we simply return
zero. As an example, in our Rosenbrock example, we minimize the function f : R2 → R where

f(x) = (1− x1)2 + 100(x2 − x21)2.

This function has a gradient of

∇f(x) =

[
−400x1(x2 − x21)− 2(1− x1)

200(x2 − x21)

]
and Hessian-vector product of

∇2f(x)δx =

[
1200x21 − 400x2 + 2 −400x1

−400x1 200

]
δx.

Using Optizelle’s internal vector spaces, we implement these functions as:

Language C++

Code // Squares its input

template <typename Real>

Real sq(Real x){

return x*x;

}

// Define the Rosenbrock function where

//

// f(x,y)=(1-x)^2+100(y-x^2)^2

//

struct Rosenbrock

: public Optizelle::ScalarValuedFunction <double,Optizelle::Rm>

{

typedef Optizelle::Rm <double> X;

// Evaluation of the Rosenbrock function

double eval(X::Vector const & x) const {

return sq(1.-x[0])+100.*sq(x[1]-sq(x[0]));

}

// Gradient

void grad(

X::Vector const & x,

X::Vector & grad

) const {

grad[0]=-400.*x[0]*(x[1]-sq(x[0]))-2.*(1.-x[0]);

grad[1]=200.*(x[1]-sq(x[0]));

}

// Hessian-vector product

void hessvec(

X::Vector const & x,
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X::Vector const & dx,

X::Vector & H_dx

) const {

H_dx[0]=(1200.*sq(x[0])-400.*x[1]+2)*dx[0]-400.*x[0]*dx[1];

H_dx[1]=-400.*x[0]*dx[0]+200.*dx[1];

}

};

Language Python

Code # Squares its input

sq = lambda x:x*x

# Define the Rosenbrock function where

#

# f(x,y)=(1-x)^2+100(y-x^2)^2

#

class Rosenbrock(Optizelle.ScalarValuedFunction):

# Evaluation of the Rosenbrock function

def eval(self,x):

return sq(1.-x[0])+100.*sq(x[1]-sq(x[0]))

# Gradient

def grad(self,x,grad):

grad[0]=-400*x[0]*(x[1]-sq(x[0]))-2*(1-x[0])

grad[1]=200*(x[1]-sq(x[0]))

# Hessian-vector product

def hessvec(self,x,dx,H_dx):

H_dx[0] = (1200*sq(x[0])-400*x[1]+2)*dx[0]-400*x[0]*dx[1]

H_dx[1] = -400*x[0]*dx[0] + 200*dx[1]

Language MATLAB/Octave

Code % Squares its input

function z = sq(x)

z=x*x;

end

% Define the Rosenbrock function where

%

% f(x,y)=(1-x)^2+100(y-x^2)^2

%

function self = Rosenbrock()

% Evaluation of the Rosenbrock function

self.eval = @(x) sq(1.-x(1))+100.*sq(x(2)-sq(x(1)));

% Gradient

self.grad = @(x) [

-400.*x(1)*(x(2)-sq(x(1)))-2.*(1.-x(1));

200.*(x(2)-sq(x(1)))];

% Hessian-vector product
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self.hessvec = @(x,dx) [

(1200.*sq(x(1))-400.*x(2)+2)*dx(1)-400.*x(1)*dx(2);

-400.*x(1)*dx(1)+200.*dx(2)];

end

In our Simple equality constrained example, we have an objective f : R2 → R where

f(x) = x21 + x22

This function has a gradient of

∇f(x) =

[
2x1
2x2

]
and Hessian-vector product of

∇2f(x)δx =

[
2 0
0 2

]
δx.

We implement this function with the code:

Language C++

Code // Squares its input

template <typename Real>

Real sq(Real const & x){

return x*x;

}

// Define a simple objective where

//

// f(x,y)=x^2+y^2

//

struct MyObj

: public Optizelle::ScalarValuedFunction <double,Optizelle::Rm>

{

typedef Optizelle::Rm <double> X;

// Evaluation

double eval(X::Vector const & x) const {

return sq(x[0])+sq(x[1]);

}

// Gradient

void grad(

X::Vector const & x,

X::Vector & grad

) const {

grad[0]=2.*x[0];

grad[1]=2.*x[1];

}

// Hessian-vector product

void hessvec(

X::Vector const & x,

X::Vector const & dx,

X::Vector & H_dx

) const {

H_dx[0]=2.*dx[0];

H_dx[1]=2.*dx[1];

}

};
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Language Python

Code # Squares its input

sq = lambda x:x*x

# Define a simple objective where

#

# f(x,y)=x^2+y^2

#

class MyObj(Optizelle.ScalarValuedFunction):

# Evaluation

def eval(self,x):

return sq(x[0])+sq(x[1])

# Gradient

def grad(self,x,grad):

grad[0]=2.*x[0]

grad[1]=2.*x[1]

# Hessian-vector product

def hessvec(self,x,dx,H_dx):

H_dx[0]=2.*dx[0]

H_dx[1]=2.*dx[1]

Language MATLAB/Octave

Code % Squares its input

function z = sq(x)

z=x*x;

end

% Define a simple objective where

%

% f(x,y)=x^2+y^2

%

function self = MyObj()

% Evaluation

self.eval = @(x) sq(x(1))+sq(x(2));

% Gradient

self.grad = @(x) [ ...

2.*x(1); ...

2.*x(2)];

% Hessian-vector product

self.hessvec = @(x,dx) [ ...

2.*dx(1); ...

2.*dx(2)];

end

34



3.4 (Optional) Define the constraints

In the optimization problems

Unconstrained Equality Constrained
min
x∈X

f(x) min
x∈X

f(x)

st g(x) = 0
Inequality Constrained Constrained
min
x∈X

f(x)

st h(x) � 0

min
x∈X

f(x)

st g(x) = 0
h(x) � 0

the vector-valued functions g : X → Y and h : X → Z denote the equality and inequality constraints,
respectfully. Here, we allow the equality constraints to be nonlinear, but require that the inequality constraints
be affine. Recall, an affine function is one where h(αx + (1 − α)x) = αh(x) + (1 − α)h(y) for all α ∈ R or
equivalently where h′′(x) = 0. We require affine inequality constraints in order to simplify the line search that
maintains the nonnegativity of the inequality constraints. In case we have a nonlinear inequality constraint,
we must reformulate the problem in order to make it affine. The easiest method for doing so is through the
reformulations

min
x∈X

f(x)

st h(x) � 0

}
 


min

x∈X,z∈Z
f(x)

st h(x)− z = 0
z � 0

and

min
x∈X

f(x)

st g(x) = 0
h(x) � 0

 


min
x∈X,z∈Z

f(x)

st

[
g(x)

h(x)− z

]
=

[
0
0

]
z � 0.

Similar to the objective function, we require derivative information in order optimize effectively. Specifically,
we require the evaluation, g(x), Fréchet (total) derivative applied to a vector, g′(x)δx, and the adjoint of the
Fréchet derivative applied to a vector, g′(x)∗δy. In order to use second order algorithms, we also require the
second derivative operation (g′′(x)δx)∗δy. Note, we require the same operations from h, but since h is affine,
(h′′(x)δx)∗δz = 0. In the case that g : Rm → Rn and we use the inner product 〈x, y〉 = xT y for both Rm and
Rn, the derivation of these derivatives is quite simple. Here, we write g as

g(x) =

g1(x)
...

gn(x)

 .
This means that we have

g′(x)δx =

∇g1(x)T

...
∇gn(x)T

 δx
g′(x)∗δy =

[
∇g1(x) . . . ∇gn(x)

]
δy

(g′′(x)δx)∗δy =

n∑
i=1

δyi∇2gi(x)δx.

In code, these derivatives become:

Language C++

Structure Optizelle::VectorValuedFunction

Interface Inheritance
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Code namespace Optizelle{

// A vector valued function interface, f : X -> Y

template <

typename Real,

template <typename> class XX,

template <typename> class YY

>

struct VectorValuedFunction {

// Create some type shortcuts

typedef XX <Real> X;

typedef typename X::Vector X_Vector;

typedef YY <Real> Y;

typedef typename Y::Vector Y_Vector;

// y=f(x)

virtual void eval(X_Vector const & x,Y_Vector & y) const = 0;

// y=f’(x)dx

virtual void p(

X_Vector const & x,

X_Vector const & dx,

Y_Vector & y

) const = 0;

// z=f’(x)*dy

virtual void ps(

X_Vector const & x,

Y_Vector const & dy,

X_Vector & z

) const= 0;

// z=(f’’(x)dx)*dy

virtual void pps(

X_Vector const & x,

X_Vector const & dx,

Y_Vector const & dy,

X_Vector & z

) const = 0;

// Allow a derived class to deallocate memory

virtual ~VectorValuedFunction() {}

};

}

Language Python

Structure Optizelle.VectorValuedFunction

Interface Inheritance

Code class VectorValuedFunction(object):

"""A vector valued function interface, f : X -> Y"""

def _err(self,fn):

"""Produces an error message for an undefined function"""

raise Exception.t("%s function is not defined in a " % (fn) +
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"VectorValuedFunction")

def eval(self,x,y):

"""y <- f(x)"""

_err(self,"eval")

def p(self,x,dx,y):

"""y <- f’(x)dx"""

_err(self,"p")

def ps(self,x,dx,z):

"""z <- f’(x)dx"""

_err(self,"ps")

def pps(self,x,dx,dy,z):

"""z <- (f’’(x)dx)*dy"""

_err(self,"pps")

Language MATLAB/Octave

Structure Optizelle.VectorValuedFunction

Interface Members present

Code % A vector valued function interface, f : X -> Y

err_vvf=@(x)error(sprintf( ...

’The %s function is not defined in a VectorValuedFunction.’,x));

Optizelle.VectorValuedFunction = struct( ...

’eval’,@(x)err_vvf(’eval’), ...

’p’,@(x,dx)err_vvf(’p’), ...

’ps’,@(x,dy)err_vvf(’ps’), ...

’pps’,@(x,dx,dy)err_vvf(’pps’));

Note, we require that the second derivative always be present. If one is not available, we simply return zero.
For example, in our Simple equality constrained example, we define a simple equality constraint as

g(x) =
[
(x1 − 2)2 + (x2 − 2)2 − 1

]
.

Then, we have that

g′(x)δx =
[
2(x1 − 2) 2(x2 − 2)

]
δx

g′(x)∗δy =

[
2(x1 − 2)
2(x2 − 2)

]
δy

(g′′(x)δx)∗δy =δy

[
2 0
0 2

]
δx

Using Optizelle’s internal vector spaces, we implement these functions as:

Language C++

Code // Define a simple equality constraint

//

// g(x,y)= [ (x-2)^2 + (y-2)^2 = 1 ]

//

struct MyEq

:public Optizelle::VectorValuedFunction<double,Optizelle::Rm,Optizelle::Rm>

{
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typedef Optizelle::Rm <double> X;

typedef Optizelle::Rm <double> Y;

// y=g(x)

void eval(

X::Vector const & x,

Y::Vector & y

) const {

y[0] = sq(x[0]-2.)+sq(x[1]-2.)-1.;

}

// y=g’(x)dx

void p(

X::Vector const & x,

X::Vector const & dx,

Y::Vector & y

) const {

y[0] = 2.*(x[0]-2.)*dx[0]+2.*(x[1]-2.)*dx[1];

}

// xhat=g’(x)*dy

void ps(

X::Vector const & x,

Y::Vector const & dy,

X::Vector & xhat

) const {

xhat[0] = 2.*(x[0]-2.)*dy[0];

xhat[1] = 2.*(x[1]-2.)*dy[0];

}

// xhat=(g’’(x)dx)*dy

void pps(

X::Vector const & x,

X::Vector const & dx,

Y::Vector const & dy,

X::Vector & xhat

) const {

xhat[0] = 2.*dx[0]*dy[0];

xhat[1] = 2.*dx[1]*dy[0];

}

};

Language Python

Code # Define a simple equality constraint

#

# g(x,y)= [ (x-2)^2 + (y-2)^2 = 1 ]

#

class MyEq(Optizelle.VectorValuedFunction):

# y=g(x)

def eval(self,x,y):

y[0] = sq(x[0]-2.)+sq(x[1]-2.)-1.

# y=g’(x)dx

def p(self,x,dx,y):
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y[0] = 2.*(x[0]-2.)*dx[0]+2.*(x[1]-2.)*dx[1]

# xhat=g’(x)*dy

def ps(self,x,dy,xhat):

xhat[0] = 2.*(x[0]-2.)*dy[0]

xhat[1] = 2.*(x[1]-2.)*dy[0]

# xhat=(g’’(x)dx)*dy

def pps(self,x,dx,dy,xhat):

xhat[0] = 2.*dx[0]*dy[0]

xhat[1] = 2.*dx[1]*dy[0]

Language MATLAB/Octave

Code % Define a simple equality constraint

%

% g(x,y)= [ (x-2)^2 + (y-2)^2 = 1 ]

%

function self = MyEq()

% y=g(x)

self.eval = @(x) [ ...

sq(x(1)-2.)+sq(x(2)-2.)-1.];

% y=g’(x)dx

self.p = @(x,dx) [ ...

2.*(x(1)-2.)*dx(1)+2.*(x(2)-2.)*dx(2)];

% xhat=g’(x)*dy

self.ps = @(x,dy) [ ...

2.*(x(1)-2.)*dy(1); ...

2.*(x(2)-2.)*dy(1)];

% xhat=(g’’(x)dx)*dy

self.pps = @(x,dx,dy) [ ...

2.*dx(1)*dy(1); ...

2.*dx(2)*dy(1) ];

end

3.5 (Optional) Define the preconditioners

Since Optizelle is fully matrix-free, its performance depends highly on the quality of the preconditioners
provided to it by the user. To that end, there are two places where preconditioning matters: the Hessian
of the objective function and a KKT system that relates to the equality constraints. Specifically, we benefit
when we can define PH : X → X such that

PH ≈ ∇2f(x)−1

and Pl : Y → Y along with Pr : Y → Y such that

Pl(g
′(x)g′(x)∗)Pr ≈ I.

Before we discuss these operators in detail, let us emphasize two points. First, as we describe below, we
require only the action of this preconditioner on a vector. This enables Optizelle to continue to be matrix-free.
Second, even though we use matrix-free abstractions, most of the time, we’re better off just using matrices.

39



At this point in time, both dense and sparse linear algebra libraries are extremely fast. Unless we have a large
PDE constrained optimization problem, just form a matrix of the operator, factor it, and move on.

In the objective function, we use a preconditioner for the Hessian in several different places. Foremost, we
use it to precondition linear systems related to second-order algorithms such as Newton’s method. In addition,
we use it within first-order algorithms such as nonlinear-CG and steepest descent. Certainly, ∇2f(x)−1 rep-
resents the best such preconditioner, but the Hessian may become singular during the course of optimization,
so we must take care in how we generate this preconditioner. As such, even though ∇2f(x) is self-adjoint,
the LU factorization provides a simple, effective manner to factorize the Hessian. In other words, we find
operators L and U such that

LU = ∇2f(x).

Then, our preconditioner PH : X → X approximates

PHδx ≈ U−1L−1δx.

We say approximate because either U−1 or L−1 may not exist. In this case, we note that the action of
U−1 and L−1 on a vector denotes a back and forward solve, respectively. When the inverse does not exist,
we can simply modify these solves to ignore any variables that cause problems. As a note, we only benefit
from a Hessian preconditioner in unconstrained and inequality constrained problems. For problems with
equality constraints, we use a composite-step SQP method. Here, the tangential subproblem requires a null-
space projection that replaces the Hessian preconditioner. If preconditioning the quantities in the objective is
important to the performance of the problem, then we need to reformulate the problem, so that these quantities
appear as equality constraints and then use an appropriate Schur preconditioner below. For example, we can
reformulate the problem

min
x∈X
{f(x) : g(x) = 0}

as
min

x∈X,x0∈R
{x0 : x0 = f(x), g(x) = 0}.

Note, this transformation may destroy convexity of the problem, so a different transformation may be more
appropriate. For the equality constraints, our algorithms require the repeated solution of a system whose
operator is [

I g′(x)∗

g′(x) 0

]
.

As it happens, if g′(x) is full-rank, the preconditioner[
I 0
0 (g′(x)g′(x)∗)−1

]
allows a Krylov method to solve the above system in three iterations. As such, Optizelle focuses on precon-
ditioning the operator

g′(x)g′(x)∗.

Note, unlike the Hessian, we allow both left and right preconditioners for this operator. In addition, this
operator depends on the inner product used by the vector space because it involves an adjoint. If we’re
working in Rm with the inner product 〈x, y〉 = xT y, we can ignore this nuance. Otherwise, we must modify
our factorizations to correctly account for the change in inner product. Outside of this difficulty, we note
the operator is always symmetric and positive-semidefinite. However, like the Hessian, it can and likely will
become singular during the course of optimization. As such, we propose two ways of dealing with this. In
one case, we use a QR factorization of g′(x)∗,

QR = g′(x)∗,

then form the preconditioners Pl : Y → Y and Pr : Y → Y where

Plδx ≈R−1R−∗δx,
Prδx =δx.

Again, we must take care in case R is singular. Alternatively, we can just form g′(x)g′(x)∗ and find its LU
factorization like we do with the Hessian,

LU = g′(x)g′(x)∗.
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This gives us the preconditioners

Plδx ≈U−1L−1δx,
Prδx =δx.

In theory, we can use a Choleski factorization to solve this system. The problem with this approach is that
the Choleski factorization will fail when g′(x) is not full rank. Generally, we find it easier to fix a failing
forward or back solve, as is the case with a QR or LU factorization, than to fix a failing factorization. In
code, we represent preconditioners as a generic linear operator:

Language C++

Structure Optizelle::Operator

Interface Inheritance

Code namespace Optizelle {

// A linear operator specification, A : X->Y

template <

typename Real,

template <typename> class X,

template <typename> class Y

>

struct Operator {

// Create some type shortcuts

typedef typename X <Real>::Vector X_Vector;

typedef typename Y <Real>::Vector Y_Vector;

// y = A(x)

virtual void eval(X_Vector const & x,Y_Vector &y) const = 0;

// Allow a derived class to deallocate memory

virtual ~Operator() {}

};

}

Language Python

Structure Optizelle.Operator

Interface Inheritance

Code class Operator(object):

"""A linear operator specification, A : X->Y"""

def _err(self,fn):

"""Produces an error message for an undefined function"""

raise Exception.t("%s function is not defined in an " % (fn) +

"Operator")

def eval(self,state,x,y):

"""y <- A(x)"""

_err(self,"eval")

Language MATLAB/Octave
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Structure Optizelle.Operator

Interface Members present

Code % A linear operator specification, A : X->Y

err_op=@(x)error(sprintf( ...

’The %s function is not defined in an Operator.’,x));

Optizelle.Operator = struct( ...

’eval’,@(state,x)err_op(’eval’));

As we can see, there is a slight difference when we compare C++ to Python and MATLAB/Octave. In Python
and MATLAB/Octave, we provide the preconditioner with the variable state that we describe in the section
Create the optimization state. We omit this variable in C++. If we need access to the state in C++, we can
simply pass in a reference to it during the operator’s construction. In Python and MATLAB/Octave, this is
not an option, so we must pass the state directly. To be clear, access to the variable state is important for
most preconditioners. Recall, we must either evaluate an approximation to ∇2f(x)−1δx or (g′(x)g′(x)∗)−1δy.
When Optizelle calls the preconditioner, it provides δx and δy and expects PHδx, Plδy, and Prδy as its
return. Optizelle does not call the preconditioner on the variables x and y. If we want access to these
variables, we must find them in the state. As another important note, Optizelle can not optimize user defined
factorizations. Meaning, during the course of an optimization iteration, we call these preconditioners several
different times at the same optimization iterate, x. As such, if we factorize ∇2f(x) or g′(x)g′(x)∗, it is critical
to our performance that we cache these factorizations. The easiest way to tell when a new factorization is
needed is to monitor the variable x inside of state. This variable represents the current optimization iterate
and it does not change until we take a new step in the optimization algorithms. Recall, in our Rosenbrock
example, we have a Hessian-vector product of

∇2f(x)δx =

[
1200x21 − 400x2 + 2 −400x1

−400x1 200

]
δx.

This allows us to find the inverse using Cramer’s rule

∇2f(x)−1δx =
1

80000x21 − 80000x2 + 400

[
200 400x1

400x1 1200x21 − 400x2 + 2

]
δx.

Generally, we claim using Cramer’s rule is a bad idea when compared to an LU factorization, but it works
fine on this small example. Using this formulation, we define our preconditioner to the Hessian with the code:

Language C++

Code // Define a perfect preconditioner for the Hessian

struct RosenHInv :

public Optizelle::Operator <double,Optizelle::Rm,Optizelle::Rm>

{

public:

typedef Optizelle::Rm <double> X;

typedef X::Vector X_Vector;

private:

X_Vector& x;

public:

RosenHInv(X::Vector& x_) : x(x_) {}

void eval(X_Vector const & dx,X_Vector & result) const {

auto one_over_det=1./(80000.*sq(x[0])-80000.*x[1]+400.);

result[0]=one_over_det*(200.*dx[0]+400.*x[0]*dx[1]);

result[1]=one_over_det*

(400.*x[0]*dx[0]+(1200.*x[0]*x[0]-400.*x[1]+2.)*dx[1]);

}

};
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Language Python

Code # Define a perfect preconditioner for the Hessian

class RosenHInv(Optizelle.Operator):

def eval(self,state,dx,result):

x = state.x

one_over_det=1./(80000.*sq(x[0])-80000.*x[1]+400.)

result[0]=one_over_det*(200.*dx[0]+400.*x[0]*dx[1])

result[1]=(one_over_det*

(400.*x[0]*dx[0]+(1200.*x[0]*x[0]-400.*x[1]+2.)*dx[1]))

Language MATLAB/Octave

Code % Define a perfect preconditioner for the Hessian

function self = RosenHInv()

self.eval = @(state,dx) eval(state,dx);

end

function result = eval(state,dx)

x = state.x;

one_over_det=1./(80000.*sq(x(1))-80000.*x(2)+400.);

result = [

one_over_det*(200.*dx(1)+400.*x(1)*dx(2));

one_over_det*...

(400.*x(1)*dx(1)+(1200.*x(1)*x(1)-400.*x(2)+2.)*dx(2))];

end

For our simple equality constraint

g(x) =
[
(x1 − 2)2 + (x2 − 2)2 − 1

]
.

We have that

g′(x)δx =
[
2(x1 − 2) 2(x2 − 2)

]
δx

g′(x)∗δy =

[
2(x1 − 2)
2(x2 − 2)

]
δy.

This means that
g′(x)g′(x)∗δy = (4(x1 − 2)2 + 4(x2 − 2)2)δy

and we have a perfect preconditioner

(g′(x)g′(x)∗)−1δy =
1

4(x1 − 2)2 + 4(x2 − 2)2
δy.

We implement this in our Simple equality constrained example with the code:

Language C++

Code // Define a Schur preconditioner for the equality constraints

struct MyPrecon:

public Optizelle::Operator <double,Optizelle::Rm,Optizelle::Rm>

{

public:

typedef Optizelle::Rm <double> X;

typedef X::Vector X_Vector;

typedef Optizelle::Rm <double> Y;

typedef Y::Vector Y_Vector;

private:
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X_Vector& x;

public:

MyPrecon(X::Vector& x_) : x(x_) {}

void eval(Y_Vector const & dy,Y_Vector & result) const {

result[0]=dy[0]/sq(4.*(x[0]-2.)+4.*sq(x[1]-2.));

}

};

Language Python

Code # Define a Schur preconditioner for the equality constraints

class MyPrecon(Optizelle.Operator):

def eval(self,state,dy,result):

result[0]=dy[0]/sq(4.*(x[0]-2.)+4.*sq(x[1]-2.))

Language MATLAB/Octave

Code % Define a Schur preconditioner for the equality constraints

function self = MyPrecon()

self.eval=@(state,dy)dy(1)/sq(4.*(state.x(1)-2.)+4.*sq(state.x(2)-2.));

end

3.6 Create the optimization state

In Optizelle, the optimization state contains an entire description of the current state of the optimization
algorithm. This is unique to the particular optimization formulation, but all algorithms in a particular
formulations share the same state. Most algorithms do not require information about all of these pieces,
but they are present to make it easier to switch from one algorithm to another. For example, trust-region
and line-search algorithms share several components, but the trust-region radius is unique to trust-region
algorithms and the line-search step length is unique to line-search algorithms. Nevertheless, we may want to
switch from one algorithm to another, so they share the same components. In order to define an optimization
state, we instantiate the state class within the particular class of formulation we require. The syntax is:

Language C++

Code Optizelle::Unconstrained <Real,XX>::State::t state(x);

Optizelle::EqualityConstrained <Real,XX,YY>::State::t state(x,y);

Optizelle::InequalityConstrained <Real,XX,ZZ>::State::t state(x,z);

Optizelle::Constrained <Real,XX,YY,ZZ>::State::t state(x,y,z);

Language Python

Code state = Optizelle.Unconstrained.State.t(XX,x)

state = Optizelle.EqualityConstrained.State.t(XX,YY,x,y)

state = Optizelle.InequalityConstrained.State.t(XX,ZZ,x,z)

state = Optizelle.Constrained.State.t(XX,YY,ZZ,x,y,z)
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Language MATLAB/Octave

Code state = Optizelle.Unconstrained.State.t(XX,x);

state = Optizelle.EqualityConstrained.State.t(XX,YY,x,y);

state = Optizelle.InequalityConstrained.State.t(XX,ZZ,x,z);

state = Optizelle.Constrained.State.t(XX,YY,ZZ,x,y,z);

Here, XX, YY, and ZZ correspond to the vector spaces X, Y , and Z described in the section Import or define
the appropriate vector spaces. Likely, they are just Optizelle::Rm or Optizelle.Rm. Next, the variable x

denotes an initial guess for the optimization problem. This guess is very important to the performance of the
algorithms, so choose wisely. The variables y and z represent arbitrary elements in the codomain of g and h,
respectively. We do not use the values of these variables, so any properly allocated vector works fine. As an
example, we create the optimization state in the Rosenbrock example with the following code:

Language C++

Code // Generate an initial guess for Rosenbrock

auto x = std::vector <double> {-1.2, 1.};

// Create an unconstrained state based on this vector

Optizelle::Unconstrained <double,Optizelle::Rm>::State::t state(x);

Language Python

Code # Generate an initial guess for Rosenbrock

x = numpy.array([-1.2,1.0])

# Create an unconstrained state based on this vector

state=Optizelle.Unconstrained.State.t(Optizelle.Rm,x)

Language MATLAB/Octave

Code % Generate an initial guess for Rosenbrock

x = [-1.2;1.];

% Create an unconstrained state based on this vector

state=Optizelle.Unconstrained.State.t(Optizelle.Rm,x);

In our Simple equality constrained example, we have:

Language C++

Code // Generate an initial guess

auto x = std::vector <double> {2.1, 1.1};

// Allocate memory for the equality multiplier

auto y = std::vector <double> (1);

// Create an optimization state

Optizelle::EqualityConstrained <double,Rm,Rm>::State::t state(x,y);

Language Python
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Code # Generate an initial guess

x = numpy.array([2.1,1.1])

# Allocate memory for the equality multiplier

y = numpy.array([0.])

# Create an optimization state

state=Optizelle.EqualityConstrained.State.t(Optizelle.Rm,Optizelle.Rm,x,y)

Language MATLAB/Octave

Code % Generate an initial guess

x = [2.1;1.1];

% Allocate memory for the equality multiplier

y = [0.];

% Create an optimization state

state= Optizelle.EqualityConstrained.State.t(Optizelle.Rm,Optizelle.Rm,x,y);

3.7 Set the optimization parameters

For each optimization problem, the parameters required for an efficient optimization solve can vary wildly.
Nevertheless, the parameters that guide this process reside within the state object. There are two mechanisms
for modifying these entries. First, the state object created in the section Create the optimization state is simply
an object with a variety of elements that can be modified directly. Alternatively, and preferably, we can use
the JSON reader. The syntax for reading a parameter file in JSON format from file is:

Language C++

Code Optizelle::json::Unconstrained <Real,XX>::read(fname,state);

Optizelle::json::EqualityConstrained <Real,XX,YY>::read(fname,state);

Optizelle::json::InequalityConstrained <Real,XX,ZZ>::read(fname,state);

Optizelle::json::Constrained <Real,XX,YY,ZZ>::read(fname,state);

Language Python

Code Optizelle.json.Unconstrained.read(XX,fname,state)

Optizelle.json.EqualityConstrained.read(XX,YY,fname,state)

Optizelle.json.InequalityConstrained.read(XX,ZZ,fname,state)

Optizelle.json.Constrained.read(XX,YY,ZZ,fname,state)

Language MATLAB/Octave
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Code state = Optizelle.json.Unconstrained.read(XX,fname,state);

state = Optizelle.json.EqualityConstrained.read(XX,YY,fname,state);

state = Optizelle.json.InequalityConstrained.read(XX,ZZ,fname,state);

state = Optizelle.json.Constrained.read(XX,YY,ZZ,fname,state);

Here, most of the parameters required are identical to those required in the section Create the optimization
state. The lone, new parameter is fname, which corresponds to a string of the file name where we read the
JSON formatted parameters. As to what these parameters are, we discuss that in the chapter Optimization
parameters. In our Rosenbrock example, we use the following code to read the optimization parameters:

Language C++

Code // Read the parameters from file

Optizelle::json::Unconstrained <double,Optizelle::Rm>::read(fname,state);

Language Python

Code # Read the parameters from file

Optizelle.json.Unconstrained.read(Optizelle.Rm,fname,state)

Language MATLAB/Octave

Code % Read the parameters from file

state=Optizelle.json.Unconstrained.read(Optizelle.Rm,fname,state);

This becomes the following in our Simple equality constrained example:

Language C++

Code // Read the parameters from file

Optizelle::json::EqualityConstrained <double,Optizelle::Rm,Optizelle::Rm>

::read(fname,state);

Language Python

Code # Read the parameters from file

Optizelle.json.EqualityConstrained.read(Optizelle.Rm,Optizelle.Rm,fname,state)

Language MATLAB/Octave

Code % Read the parameters from file

state = Optizelle.json.EqualityConstrained.read( ...

Optizelle.Rm,Optizelle.Rm,fname,state);

3.8 Accumulate the functions

In order to pass the functions used in the optimization to Optizelle, we accumulate each of them into a bundle
of functions. These bundles are simple structures that contain the appropriate function. The syntax for
creating these objects is:

Language C++
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Code Optizelle::Unconstrained <Real,XX>::Functions::t fns;

Optizelle::EqualityConstrained <Real,XX,YY>::Functions::t fns;

Optizelle::InequalityConstrained <Real,XX,ZZ>::Functions::t fns;

Optizelle::Constrained <Real,XX,YY,ZZ>::Functions::t fns;

Language Python

Code fns = Optizelle.Unconstrained.Functions.t()

fns = Optizelle.EqualityConstrained.Functions.t()

fns = Optizelle.InequalityConstrained.Functions.t()

fns = Optizelle.Constrained.Functions.t()

Language MATLAB/Octave

Code fns = Optizelle.Unconstrained.Functions.t;

fns = Optizelle.EqualityConstrained.Functions.t;

fns = Optizelle.InequalityConstrained.Functions.t;

fns = Optizelle.Constrained.Functions.t;

As was the case in the section Create the optimization state, XX, YY, and ZZ correspond to the vector spaces
X, Y , and Z described in the section Import or define the appropriate vector spaces. Likely, they are
just Optizelle::Rm or Optizelle.Rm. Now, each of structures contains a number of required and optional
elements. We summarize these elements as follows:

Element f

Type ScalarValuedFunction

Problem Class Unconstrained, Equality Constrained, Inequality Constrained, Constrained

Required Yes

Description Objective function.

Element PH

Type Operator

Problem Class Unconstrained, Equality Constrained, Inequality Constrained, Constrained

Required No

Description Preconditioner for the Hessian of the objective function, ∇2f(x).

Element g

Type VectorValuedFunction
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Problem Class Equality Constrained, Constrained

Required Yes

Description Equality constraint.

Element PSchur left

Type Operator

Problem Class Equality Constrained, Constrained

Required No

Description Left Schur preconditioner for derivative of the equality constraint, g′(x)g′(x)∗.

Element PSchur right

Type Operator

Problem Class Equality Constrained, Constrained

Required No

Description Right Schur preconditioner for derivative of the equality constraint, g′(x)g′(x)∗.

Element h

Type VectorValuedFunction

Problem Class Inequality Constrained, Constrained

Required Yes

Description Inequality constraint.

In C++, we represent each of the these elements as a std::unique ptr using the type specified above. In
Python, we use simple class elements. In MATLAB/Octave, we use a structure array. As a final note, since
they are optional, we do not utilize PH, PSchur left, or PSchur right by default even when they are defined.
In order to active these functions, we must modify the PH type, PSchur left type, and PSchur right type

elements in the state, respectively. We describe these variables in the chapter Optimization parameters. In
our Rosenbrock example, we accumulate our functions with the following code:

Language C++

Code // Create the bundle of functions

Optizelle::Unconstrained <double,Optizelle::Rm>::Functions::t fns;

fns.f.reset(new Rosenbrock);

fns.PH.reset(new RosenHInv(state.x));

Language Python

Code # Create the bundle of functions

fns=Optizelle.Unconstrained.Functions.t()

fns.f=Rosenbrock()

fns.PH=RosenHInv()
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Language MATLAB/Octave

Code % Create the bundle of functions

fns=Optizelle.Unconstrained.Functions.t;

fns.f=Rosenbrock();

fns.PH=RosenHInv();

As another example, we accomplish the same task in our Simple equality constrained example with the code:

Language C++

Code // Create a bundle of functions

Optizelle::EqualityConstrained <double,Rm,Rm>::Functions::t fns;

fns.f.reset(new MyObj);

fns.g.reset(new MyEq);

fns.PSchur_left.reset(new MyPrecon(state.x));

Language Python

Code # Create a bundle of functions

fns=Optizelle.EqualityConstrained.Functions.t()

fns.f=MyObj()

fns.g=MyEq()

fns.PSchur_left=MyPrecon()

Language MATLAB/Octave

Code % Create a bundle of functions

fns=Optizelle.EqualityConstrained.Functions.t;

fns.f=MyObj();

fns.g=MyEq();

fns.PSchur_left=MyPrecon();

3.9 Call the optimization solver

Once the state, parameters, and functions are set, calling the optimization solver is straightforward. Simply,
we call one of the four commands:

Language C++

Code Optizelle::Unconstrained<Real,XX>::Algorithms::getMin(

msg,fns,state);

Optizelle::EqualityConstrained<Real,XX,YY>::Algorithms::getMin(

msg,fns,state);

Optizelle::InequalityConstrained<Real,XX,ZZ>::Algorithms::getMin(

msg,fns,state);

Optizelle::Constrained<Real,XX,YY,ZZ>::Algorithms::getMin(

msg,fns,state);

Language Python
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Code Optizelle.Unconstrained.Algorithms.getMin(XX,msg,fns,state)

Optizelle.EqualityConstrained.Algorithms.getMin(XX,YY,msg,fns,state)

Optizelle.InequalityConstrained.Algorithms.getMin(XX,ZZ,msg,fns,state)

Optizelle.Constrained.Algorithms.getMin(XX,YY,ZZ,msg,fns,state)

Language MATLAB/Octave

Code state = Optizelle.Unconstrained.Algorithms.getMin(XX,msg,fns,state);

state = Optizelle.EqualityConstrained.Algorithms.getMin(XX,YY,msg,fns,state);

state = Optizelle.InequalityConstrained.Algorithms.getMin(XX,ZZ,msg,fns,state);

state = Optizelle.Constrained.Algorithms.getMin(XX,YY,ZZ,msg,fns,state);

As was the case in the section Create the optimization state, XX, YY, and ZZ correspond to the vector spaces
X, Y , and Z described in the section Import or define the appropriate vector spaces. Likely, they are just
Optizelle::Rm or Optizelle.Rm. Next, we call the function with a Messaging object, msg. In the simple
case, we can simply use Optizelle::Messaging::stdout in C++, Optizelle.Messaging.stdout in Python,
and Optizelle.Messaging.stdout in MATLAB/Octave. For more complicated cases, see the section User-
defined messaging. Finally, we pass in the state and bundle of functions that we discussed in the sections
Create the optimization state and Accumulate the functions, respectively.

In our Rosenbrock example, we call Optizelle’s solver with the code:

Language C++

Code // Solve the optimization problem

Optizelle::Unconstrained <double,Optizelle::Rm>::Algorithms

::getMin(Optizelle::Messaging::stdout,fns,state);

Language Python

Code # Solve the optimization problem

Optizelle.Unconstrained.Algorithms.getMin(

Optizelle.Rm,Optizelle.Messaging.stdout,fns,state)

Language MATLAB/Octave

Code % Solve the optimization problem

state = Optizelle.Unconstrained.Algorithms.getMin( ...

Optizelle.Rm,Optizelle.Messaging.stdout,fns,state);

With the Simple equality constrained example, this becomes:

Language C++

Code // Solve the optimization problem

Optizelle::EqualityConstrained <double,Rm,Rm>::Algorithms::getMin(

Optizelle::Messaging::stdout,fns,state);

Language Python
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Code # Solve the optimization problem

Optizelle.EqualityConstrained.Algorithms.getMin(

Optizelle.Rm,Optizelle.Rm,Optizelle.Messaging.stdout,fns,state)

Language MATLAB/Octave

Code % Solve the optimization problem

state = Optizelle.EqualityConstrained.Algorithms.getMin( ...

Optizelle.Rm,Optizelle.Rm,Optizelle.Messaging.stdout,fns,state);

3.10 Extract the solution

After the optimization routine concludes, the solution resides inside of the optimization state in a variable
called x and the reason we stopped the optimization resides in a variable called opt stop. At this point, we
can examine our solution and run any post optimization diagnostics we require. In our Rosenbrock example,
we print out the final solution with the code:

Language C++

Code // Print out the reason for convergence

std::cout << "The algorithm converged due to: " <<

Optizelle::OptimizationStop::to_string(state.opt_stop) <<

std::endl;

// Print out the final answer

std::cout << "The optimal point is: (" << state.x[0] << ’,’

<< state.x[1] << ’)’ << std::endl;

Language Python

Code # Print out the reason for convergence

print "The algorithm converged due to: %s" % (

Optizelle.OptimizationStop.to_string(state.opt_stop))

# Print out the final answer

print "The optimal point is: (%e,%e)" % (state.x[0],state.x[1])

Language MATLAB/Octave

Code % Print out the reason for convergence

fprintf(’The algorithm converged due to: %s\n’, ...

Optizelle.OptimizationStop.to_string(state.opt_stop));

% Print out the final answer

fprintf(’The optimal point is: (%e,%e)\n’,state.x(1),state.x(2));

In our Simple equality constrained example, this becomes:

Language C++
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Code // Print out the reason for convergence

std::cout << "The algorithm converged due to: " <<

Optizelle::OptimizationStop::to_string(state.opt_stop) <<

std::endl;

// Print out the final answer

std::cout << std::scientific << std::setprecision(16)

<< "The optimal point is: (" << state.x[0] << ’,’

<< state.x[1] << ’)’ << std::endl;

Language Python

Code # Print out the reason for convergence

print "The algorithm converged due to: %s" % (

Optizelle.OptimizationStop.to_string(state.opt_stop))

# Print out the final answer

print "The optimal point is: (%e,%e)" % (state.x[0],state.x[1])

Language MATLAB/Octave

Code % Print out the reason for convergence

fprintf(’The algorithm converged due to: %s\n’, ...

Optizelle.OptimizationStop.to_string(state.opt_stop));

% Print out the final answer

fprintf(’The optimal point is: (%e,%e)\n’,state.x(1),state.x(2));

3.11 Compile/run the program

As a final step, we need to either compile or run the program. Each language has its own nuances that we
describe below.

3.11.1 C++

By default, we install the C++ relevant headers and libraries to

/some/path

lib

liboptizelle.a

optizelle.lib

liboptizelle.so

liboptizelle.dylib

optizelle.dll

include

optizelle

optizelle.h

json.h

vspaces.h

where /some/path denotes the installation directory. Therefore, in order to compile an Optizelle program,
we must add the directory

/some/path/include

to the list of include directories and
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/some/path/lib

to the list of library directories. For the static library, we link either liboptizelle.a or optizelle.lib.
For the dynamic library, we link either liboptizelle.so, liboptizelle.dylib, or optizelle.dll. Note,
Optizelle depends on JsonCpp, BLAS, and LAPACK as well. Therefore, these headers and libraries must be
included in any compilation command as well. For example, in GCC, we may have the following set of build
flags

-I/usr/include -L/usr/lib -L/usr/share/optizelle/thirdparty/lib -loptizelle -ljson -lblas

-llapack

where we assume CMAKE INSTALL PREFIX=/usr.

3.11.2 Python/MATLAB/Octave

We require no compilation.
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4
Optimization parameters

The parameters that guide the optimization solver have a dramatic effect its performance. To that end, we
find each of these parameters within the optimization state that we initially discussed in the section Create
the optimization state. These parameters are based on the canonical formulations

Unconstrained Equality Constrained
min
x∈X

f(x) min
x∈X

f(x)

st g(x) = 0
Inequality Constrained Constrained
min
x∈X

f(x)

st h(x) � 0

min
x∈X

f(x)

st g(x) = 0
h(x) � 0

and come in one of nine types:

Type Real

Description Floating point numbers. In C++, this may be a type such as double or float as
long as it matches the template parameters used in items such as state and fns. In
Python and Matlab/Octave, we use the default floating point representation.

Type Natural

Description Nonnegative integer. In C++, we use the type Optizelle::Natural, which we set to
be size t. In Python, we use the default integer representation. In MATLAB/Octave,
we use the default floating point representation.

Type Enumerated

Description Enumerated type. In C++, we use an enum type called t wrapped inside a namespace
that we type explicitly to Natural. For example, we refer to the algorithm class as
AlgorithmClass and define its type as AlgorithmClass::t. Then, we refer to the
enumerated values as:

• AlgorithmClass::TrustRegion

• AlgorithmClass::LineSearch

• AlgorithmClass::UserDefined

In Python, we use integers, which we wrap inside of a class. For example, the class
AlgorithmClass contains three integer values that we access with:
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• AlgorithmClass.TrustRegion

• AlgorithmClass.LineSearch

• AlgorithmClass.UserDefined

In MATLAB/Octave, we use floating point numbers, which we wrap inside of a struc-
tured array. For example, the structure array AlgorithmClass contains three floating
point values that we designate as:

• AlgorithmClass.TrustRegion

• AlgorithmClass.LineSearch

• AlgorithmClass.UserDefined

In all cases, we also provide a function called to string in the class or namespace that
converts the enumerated type to a string with the name of the enumerated element.
Using our previous example of AlgorithmClass, in C++ we use

AlgorithmClass::to string

whereas in Python and MATLAB/Octave we use

AlgorithmClass.to string.

As to our specific enumerated types, we elaborate on them below.

Type X Vector

Description User defined vector within the vector space X, the domain of our objective function,
f : X → R.

Type Y Vector

Description User defined vector within the vector space Y , the codomain of our equality constraint,
g : X → Y with g(x) = 0.

Type Z Vector

Description User defined vector within the vector space Z, the codomain of our inequality con-
straint, h : X → Z with h(x) � 0.

Type List

Description List of a specified kind of vectors. In C++, this denotes a std::list. In Python, this
becomes a list. Finally, in MATLAB/Octave, we use a cell array.

Type Function

Description Function of a specified kind of variable. This type represents a function inside the
state structure that we use to set a number of similar parameters. However, in the
JSON parameter files, we set it like it was just another parameter.

We further classify our enumerated types into the following:

Type AlgorithmClass
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Values TrustRegion, // Trust-Region algorithms

LineSearch, // Line-search algorithms

UserDefined // User provides the iterate

Type OptimizationStop

Values NotConverged, // Algorithm did not converge

GradientSmall, // Gradient was sufficiently small

StepSmall, // Change in the step is small

MaxItersExceeded, // Maximum number of iterations exceeded

InteriorPointInstability,// Instability in the interior point method

GlobalizationFailure, // Too many failed globalization iterations

UserDefined // Some user defined stopping condition

Type Operators

Values Identity, // Identity approximation

Zero, // Zero approximation

ScaledIdentity, // Scaled identity approximation

//

// || grad || / (2 delta) I

//

// Use this for trust-region steepest descent

// rather than Identity since it forces the

// iterate into the trust region

BFGS, // BFGS approximation

InvBFGS, // Inverse BFGS approximation

SR1, // SR1 approximation

InvSR1, // Inverse SR1 approximation

UserDefined // User defined operator (such as the true

// Hessian for Newton’s method)

Type LineSearchDirection

Values // Note, all methods here, save BFGS, are preconditioned. This

// includes steepest descent, where dx = -PH grad. This is a good

// way to implement a user-defined search direction. For example,

// when we define PH to be the inverse of the Hessian, we get

// a globalized Newton method.

SteepestDescent, // SteepestDescent

FletcherReeves, // Fletcher-Reeves CG

PolakRibiere, // Polak-Ribiere CG

HestenesStiefel, // HestenesStiefel CG

BFGS, // Limited-memory BFGS

NewtonCG // Newton-CG

Type LineSearchKind

Values GoldenSection, // Golden-section search

BackTracking, // BackTracking search

TwoPointA, // Barzilai and Borwein’s method A

TwoPointB // Barzilai and Borwein’s method B
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Type OptimizationLocation

Values // Occurs at the start of the optimization function

BeginningOfOptimization,

// Occurs before the initial function and gradient evaluation

BeforeInitialFuncAndGrad,

// Occurs after the initial function and gradient evaluation

AfterInitialFuncAndGrad,

// Occurs just before the main optimization loop

BeforeOptimizationLoop,

// Occurs at the beginning of the optimization loop

BeginningOfOptimizationLoop,

// Occurs just before we take the optimization step x+dx

BeforeSaveOld,

// Occurs just before we take the optimization step x+dx

BeforeStep,

// Occurs before we calculate our new step.

BeforeGetStep,

// Occurs during a user defined get step calculation.

GetStep,

// Occurs after we take the optimization step x+dx, but before

// we calculate the gradient based on this new step. In addition,

// after this point we set the objective value, f_x, to be

// f_xpdx.

AfterStepBeforeGradient,

// Occurs just after the gradient computation with the new

// trial step

AfterGradient,

// Occurs before we update our quasi-Newton information.

BeforeQuasi,
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// Occurs after we update our quasi-Newton information.

AfterQuasi,

// This occurs after we check our stopping condition. This is

// where the equality and inequality algorithms adjust the

// stopping conditions.

AfterCheckStop,

// This occurs last in the optimization loop. At this point,

// we have already incremented our optimization iteration and

// checked our stopping condition

EndOfOptimizationIteration,

// This occurs prior to the computation of the line search

BeforeLineSearch,

// This occurs after a rejected trust-region step

AfterRejectedTrustRegion,

// This occurs after a rejected line-search step

AfterRejectedLineSearch,

// This occurs prior to checking the predicted versus actual

// reduction in a trust-region method.

BeforeActualVersusPredicted,

// This occurs at the end of all optimization

EndOfOptimization

Type ProblemClass

Values Unconstrained, // Unconstrained optimization

EqualityConstrained, // Equality constrained optimization

InequalityConstrained, // Inequality constrained optimization

Constrained // Fully constrained optimization

Type DiagnosticScheme

Values Never, // Never compute our diagnostic checks

DiagnosticsOnly, // No optimization. Only diagnostics.

EveryIteration // Every iteration at the start of the iteration

Type FunctionDiagnostics

Values NoDiagnostics, // No diagnostic checks

FirstOrder, // First-order function checks

SecondOrder // Second-order function checks

Type VectorSpaceDiagnostics

Values NoDiagnostics, // No diagnostic checks

Basic, // Test our basic vector space operations

EuclideanJordan // Test our Euclidean-jordan algebraic
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Type ToleranceKind

Values Relative, // Relative stopping tolerances

Absolute, // Absolute stopping tolerances

Type QuasinormalStop

Values Newton, // Obtained the full Newton point

CauchyTrustRegion, // Cauchy point truncated by the TR

CauchySafeguard, // Cauchy point truncated by the safeguard

DoglegTrustRegion, // Dogleg point truncated by the TR

DoglegSafeguard, // Dogleg point truncated by the safeguard

NewtonTrustRegion, // Newton point truncated by the TR

NewtonSafeguard, // Newton point truncated by the safeguard

Feasible, // Skipped due to feasibility

CauchySolved, // Cauchy point solved g’(x)dx_cp+g(x)=0

LocalMin, // Skipped due to a local min in the

// least-squares formulation, min 0.5 ||

// g’(x)dx + g(x) ||^2, or g’(x)*g(x)=0

NewtonFailed // Augmented system solve for the Newton

// point failed, so we regressed to the

// Cauchy point

Type TruncatedStop

Values NotConverged, // Algorithm has not converged

NegativeCurvature, // Negative curvature detected

RelativeErrorSmall, // Relative error is small

MaxItersExceeded, // Maximum number of iterations exceeded

TrustRegionViolated, // Trust-region radius violated

NanOperator, // NaN detected in the operator

NanPreconditioner, // NaN detected in the preconditioner

NonProjectorPreconditioner,// Detected a nonprojecting

// preconditioner when one is required.

// Too much inexactness in the

// composite-step SQP method can trigger

// this.

NonSymmetricPreconditioner,// Detected a nonsymmetric preconditioner

NonSymmetricOperator, // Detected a nonsymmetric operator

LossOfOrthogonality, // Loss of orthogonality between the

// Krylov vectors detected

OffsetViolatesTrustRegion, // Offset is chosen such that

// || x_offset || > delta where

// delta is the trust-region radius

OffsetViolatesSafeguard, // Offset violates the safeguard

TooManyFailedSafeguard, // Too many safeguarded steps have failed

ObjectiveIncrease // CG objective, 0.5 <ABx,Bx> - <b,Bx>

// increased between iterations, which

// shouldn’t happen.

Type Cone
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Values Linear, // Nonnegative orthant

Quadratic, // Second order cone

Semidefinite // Cone of positive semidefinite matrices

Based on these types, we catalog the precise meaning of our parameters below. As a note, the field JSON
Param denotes whether or not we allow the parameter to be set in the JSON file described in the section Set
the optimization parameters. Generally, these settable parameters correspond to parameters that tune the
behavior the algorithms. The other parameters correspond to internal quantities that assist in diagnostics or
advanced heuristics.

Name eps grad

Type Real

Valid Value state.eps_grad > Real(0.)

Problem Class Unconstrained, Equality Constrained, Inequality Constrained, Constrained

JSON Param Yes

Default 1e-8

Description Tolerance for the gradient stopping criteria reported in opt stop. We satisfy this
stopping criteria when

Unconstrained ‖∇f(x))‖ ≤ eps grad · norm gradtyp,

Equality ‖∇f(x) + g′(x)∗y‖ ≤ eps grad · norm gradtyp,

Inequality ‖∇f(x)− h′(x)∗z‖ ≤ eps grad · norm gradtyp,

Constrained ‖∇f(x) + g′(x)∗y− h′(x)∗z‖ ≤ eps grad · norm gradtyp.

At each iteration, we output the norm on the left of the inequality under the label
||grad||.

Name eps dx

Type Real

Valid Value state.eps_dx > Real(0.)

Problem Class Unconstrained, Equality Constrained, Inequality Constrained, Constrained

JSON Param Yes

Default 1e-16

Description Tolerance for the step length stopping criteria reported in opt stop. We satisfy this
stopping criteria when

‖dx‖ < eps dx · norm dxtyp.

At each iteration, we output the norm on the left of the inequality under the label
||dx||.

Name stored history

Type Natural

Valid Value // Any

Problem Class Unconstrained, Equality Constrained, Inequality Constrained, Constrained
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JSON Param Yes

Default 0

Description Number of vectors stored for use with quasi-Newton methods such as SR1 and BFGS.

Name iter

Type Natural

Valid Value state.iter > 0

Problem Class Unconstrained, Equality Constrained, Inequality Constrained, Constrained

JSON Param No

Default 1

Description Current optimization iteration. We output iter at each iteration under the label iter.

Name iter max

Type Natural

Valid Value state.iter_max > 0

Problem Class Unconstrained, Equality Constrained, Inequality Constrained, Constrained

JSON Param Yes

Default std::numeric_limits <Integer>::max()

Description Maximum number of optimization iterations for the stopping criteria reported in
opt stop. We satisfy this stopping criteria when

iter ≥ iter max

Name glob iter

Type Natural

Valid Value // Any

Problem Class Unconstrained, Equality Constrained, Inequality Constrained, Constrained

JSON Param No

Default 0

Description Current globalization iteration. Here, globalization means the current iteration of the
trust-region or line-search method and involves operations such as checking the actual
versus predicted reduction or the sufficient decrease condition.

Name glob iter max

Type Natural
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Valid Value state.glob_iter_max > 0

Problem Class Unconstrained, Equality Constrained, Inequality Constrained, Constrained

JSON Param Yes

Default 10

Description Maximum number of globalization iterations that we take before we exit the opti-
mization. In other words, we only allow this many failed trust-region or line-search
iterations before we exit the algorithm.

Name glob iter total

Type Natural

Valid Value // Any

Problem Class Unconstrained, Equality Constrained, Inequality Constrained, Constrained

JSON Param No

Default 0

Description Total number of globalization iterations taken across all iterations. This information
is helpful when determining the overall expense of the algorithm. When we properly
setup an equality constrained problem, we generally do one factorization of g′(x)g′(x)∗

every globalization iteration. In addition, evaluating the globalization routines for
trust-region methods requires one Hessian-vector product every globalization iteration.
We output glob iter total at each iteration under the label glb itr tot.

Name opt stop

Type OptimizationStop

Valid Value // Any

Problem Class Unconstrained, Equality Constrained, Inequality Constrained, Constrained

JSON Param No

Default OptimizationStop::NotConverged

Description Why we’ve stopping the optimization. We use the following logic when determining
when to stop

1. If the optimization iteration exceeds the maximum number of iterations, stop.
We control this with the parameter iter max.

2. If size of the optimization step becomes too small, stop. We control this with the
parameter eps dx.

3. If we have inequality constraints and the estimated interior point parameter
mu est becomes negative, stop.

4. If the size of the gradient becomes too small and we satisfy the following additional
conditions, stop. We control this with the parameter eps grad.

(a) For problems with equality constraints, we require that the norm of the equal-
ity constraint be small. We control this with the parameter eps constr.
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(b) For problems with inequality constraints, we require that estimated interior
point parameter be small. We control this with the parameter eps mu.

Name trunc iter

Type Natural

Valid Value // Any

Problem Class Unconstrained, Equality Constrained, Inequality Constrained, Constrained

JSON Param No

Default 0

Description Current number of iterations taken by truncated CG when solving the optimality
conditions. We output trunc iter at each iteration under the label trunc iter.

Name trunc iter max

Type Natural

Valid Value state.trunc_iter_max > 0

Problem Class Unconstrained, Equality Constrained, Inequality Constrained, Constrained

JSON Param Yes

Default 10

Description Maximum number of iterations taken by truncated CG when solving the optimality
conditions.

Name trunc iter total

Type Natural

Valid Value // Any

Problem Class Unconstrained, Equality Constrained, Inequality Constrained, Constrained

JSON Param No

Default 0

Description Total number of iterations ever taken by the truncated CG when solving the optimality
conditions. This gives information about the total amount computational effort taken
by Optizelle as we evaluate one Hessian-vector product each iteration. We output
trunc iter total at each iteration under the label trc itr tot.

Name trunc orthog storage max

Type Natural

Valid Value state.trunc_orthog_storage_max > 0
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Problem Class Unconstrained, Equality Constrained, Inequality Constrained, Constrained

JSON Param Yes

Default 1

Description Number of vectors stored and used in the orthogonalization of truncated CG. In theory,
we only need 1 for unconstrained and inequality constrained problems, but this leads
to numerical instabilities. In practice, if memory is available, it may be worthwhile to
over orthogonalize.

Name trunc orthog iter max

Type Natural

Valid Value state.trunc_orthog_iter_max > 0

Problem Class Unconstrained, Equality Constrained, Inequality Constrained, Constrained

JSON Param Yes

Default 1

Description Maximum number of orthogonalization iterations that we use in truncated-CG. In
theory, 1 should be enough, which means that we orgthogonalize against all the stored
previous directions once. In practice, we’ll eventually lose orthogonality, so using 2
may help at the cost of additional computation.

Name trunc stop

Type TruncatedStop

Valid Value // Any

Problem Class Unconstrained, Equality Constrained, Inequality Constrained, Constrained

JSON Param No

Default TruncatedStop::RelativeErrorSmall

Description Reason why truncated CG exited when solving the optimality system. We output
trunc stop at each iteration under the label trunc stop.

Name trunc err

Type Real

Valid Value // Any

Problem Class Unconstrained, Equality Constrained, Inequality Constrained, Constrained

JSON Param No

Default std::numeric_limits<Real>::quiet_NaN()

Description Relative error in the solution returned by the truncated CG when solving the optimality
system. We output trunc err at each iteration under the label trunc err.
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Name eps trunc

Type Real

Valid Value state.eps_trunc > Real(0.)

Problem Class Unconstrained, Equality Constrained, Inequality Constrained, Constrained

JSON Param Yes

Default 1e-2

Description Relative stopping criteria for truncated CG. In truncated CG, when solving the sys-
tem Ax = b with preconditioner B, we use the stopping criteria ‖B(Axk − b)‖ ≤
eps trunc‖B(Ax0 − b)‖.

Name algorithm class

Type AlgorithmClass

Valid Value // Any

Problem Class Unconstrained, Equality Constrained, Inequality Constrained, Constrained

JSON Param Yes

Default AlgorithmClass::TrustRegion

Description Class of algorithm used in optimization.

Name PH type

Type Operators

Valid Value // Any

Problem Class Unconstrained, Equality Constrained, Inequality Constrained, Constrained

JSON Param Yes

Default Operators::Identity

Description Preconditioner used when solving the optimality conditions. Note, in order to accom-
modate the null space projection, we currently ignore this quantity if problems with
equality constraints.

Name H type

Type Operators

Valid Value // Any

Problem Class Unconstrained, Equality Constrained, Inequality Constrained, Constrained

JSON Param Yes
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Default Operators::UserDefined

Description Hessian approximation for the objective function.

Name norm gradtyp

Type Real

Valid Value state.norm_gradtyp >= Real(0.)

|| (state.iter==1 && state.norm_gradtyp!=state.norm_gradtyp)

Problem Class Unconstrained, Equality Constrained, Inequality Constrained, Constrained

JSON Param No

Default std::numeric_limits<Real>::quiet_NaN()

Description Norm of a typical gradient defined as

Unconstrained ‖∇f(x0)‖,
Equality ‖∇f(x0) + g′(x0)∗y0‖,
Inequality ‖∇f(x0)− h′(x0)∗z0‖,
Constrained ‖∇f(x0) + g′(x0)∗y0 − h′(x0)∗z0‖,

where x0, y0, and z0 denote our variables at the first iteration. Sometimes, we use
norm gradtyp with the stopping criteria described in eps grad. Specifically, we only
refer to this quantity when eps kind is set to Relative. When eps kind is set to
Absolute, we ignore this value and instead use 1.0.

Name norm dxtyp

Type Real

Valid Value state.norm_dxtyp >= Real(0.)

|| (state.iter==1 && state.norm_dxtyp!=state.norm_dxtyp)

Problem Class Unconstrained, Equality Constrained, Inequality Constrained, Constrained

JSON Param No

Default std::numeric_limits<Real>::quiet_NaN()

Description Norm of a typical optimization step. Similar to norm gradtyp, we set this to be
the gradient found at the initial guess and use it in the stopping criteria described
in eps dx. Since an optimization algorithm may have numerical issues on the first
optimization iteration, we do not use the first optimization step generated. By using
the norm of the gradient, we approximate the norm of a step taken by the steepest
descent algorithm. As a note, we only refer to this quantity when eps kind is set to
Relative. When eps kind is set to Absolute, we ignore this value and instead use 1.0.

Name x

Type X Vector

Valid Value // Any
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Problem Class Unconstrained, Equality Constrained, Inequality Constrained, Constrained

JSON Param No

Default X::copy(x_user,x);

Description Optimization variable.

Name grad

Type X Vector

Valid Value // Any

Problem Class Unconstrained, Equality Constrained, Inequality Constrained, Constrained

JSON Param No

Default X::init(x_user)

Description Gradient of the objective, ∇f(x).

Name dx

Type X Vector

Valid Value // Any

Problem Class Unconstrained, Equality Constrained, Inequality Constrained, Constrained

JSON Param No

Default X::init(x_user)

Description Step taken during the optimization iteration. Every iteration we set x=x+dx. In
addition, we output the norm of this vector at each iteration under the label ||dx||.

Name x old

Type X Vector

Valid Value // Any

Problem Class Unconstrained, Equality Constrained, Inequality Constrained, Constrained

JSON Param No

Default X::init(x_user)

Description Optimization variable from the last iteration.

Name grad old

Type X Vector

Valid Value // Any
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Problem Class Unconstrained, Equality Constrained, Inequality Constrained, Constrained

JSON Param No

Default X::init(x_user)

Description Gradient of the objective from the last iteration.

Name dx old

Type X Vector

Valid Value // Any

Problem Class Unconstrained, Equality Constrained, Inequality Constrained, Constrained

JSON Param No

Default X::init(x_user)

Description Optimization step from the last iteration.

Name oldY

Type List(X Vector)

Valid Value // Any

Problem Class Unconstrained, Equality Constrained, Inequality Constrained, Constrained

JSON Param No

Default // Empty

Description Difference in prior gradients,

[∇f(xiter)−∇f(xiter−1), . . . ,∇f(xiter−stored history)−∇f(xiter−stored history−1)].

We use this list in our quasi-Newton methods.

Name oldS

Type List(X Vector)

Valid Value // Any

Problem Class Unconstrained, Equality Constrained, Inequality Constrained, Constrained

JSON Param No

Default // Empty

Description Difference in prior optimization steps,

[xiter − xiter−1, . . . , xiter−stored history − xiter−stored history−1].

We use this list in our quasi-Newton methods.
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Name f x

Type Real

Valid Value state.f_x == state.f_x || state.iter==1

Problem Class Unconstrained, Equality Constrained, Inequality Constrained, Constrained

JSON Param No

Default std::numeric_limits<Real>::quiet_NaN()

Description Current value of the objective function, f(x). We output f x at each iteration under
the label f(x).

Name f xpdx

Type Real

Valid Value state.f_xpdx == state.f_xpdx || state.iter==1

Problem Class Unconstrained, Equality Constrained, Inequality Constrained, Constrained

JSON Param No

Default std::numeric_limits<Real>::quiet_NaN()

Description Value of the objective function at the trial step, f(x + dx).

Name msg level

Type Natural

Valid Value // Any

Problem Class Unconstrained, Equality Constrained, Inequality Constrained, Constrained

JSON Param Yes

Default 1

Description Messaging level. To turn messages off, use 0. For normal messaging, set to 1. For
more detailed information, set to 2. For linear solver information, set to 3. To see
precise information about what information we display, refer to the chapter entitled
Output.

Name safeguard failed max

Type Natural

Valid Value state.safeguard_failed_max >=1

Problem Class Unconstrained, Equality Constrained, Inequality Constrained, Constrained

JSON Param Yes

Default 5
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Description Number of failed safe-guard steps before exiting truncated CG. We use this exclusively
for our inequality constraints.

Name safeguard failed

Type Natural

Valid Value // Any

Problem Class Unconstrained, Equality Constrained, Inequality Constrained, Constrained

JSON Param No

Default 0

Description Number of failed safe-guard steps during the last iteration. We output safeguard failed

at each iteration under the label safe fail.

Name safeguard failed total

Type Natural

Valid Value // Any

Problem Class Unconstrained, Equality Constrained, Inequality Constrained, Constrained

JSON Param No

Default 0

Description Total number of failed safe-guard steps.

Name alpha x

Type Real

Valid Value // Any

Problem Class Unconstrained, Equality Constrained, Inequality Constrained, Constrained

JSON Param No

Default std::numeric_limits <Real>::quiet_NaN()

Description How much we truncate dx in an interior point method in order to maintain strict
feasibility. When 1.0, we do not truncate and take a full step. We output alpha x at
each iteration under the label alpha x.

Name alpha x qn

Type Real

Valid Value // Any

Problem Class Unconstrained, Equality Constrained, Inequality Constrained, Constrained

JSON Param No
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Default std::numeric_limits <Real>::quiet_NaN()

Description How much we truncate dx n in an interior point method in order to maintain strict
feasibility. When 1.0, we do not truncate and take a full step.

We output alpha x qn at each iteration under the label alpha x qn.

Name eps kind

Type ToleranceKind

Valid Value // Any

Problem Class Unconstrained, Equality Constrained, Inequality Constrained, Constrained

JSON Param Yes

Default ToleranceKind::Absolute

Description Kind of stopping tolerance used by the algorithms.

Name delta

Type Real

Valid Value state.delta >= Real(0.)

Problem Class Unconstrained, Equality Constrained, Inequality Constrained, Constrained

JSON Param Yes

Default 1.

Description Trust region radius. We use this as a starting value. Later, we adjust the radius
depending on the behavior of the algorithms. As a note, we output delta at each
iteration under the label delta.

Name eta1

Type Real

Valid Value state.eta1 > Real(0.) && state.eta1 < Real(1.)

Problem Class Unconstrained, Equality Constrained, Inequality Constrained, Constrained

JSON Param Yes

Default .1

Description When the actual versus predicted reduction for a trust-region method is below this
threshold, we reject the step. Otherwise, we accept it.

Name eta2

Type Real

Valid Value state.eta2 > state.eta1 && state.eta2 < Real(1.)
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Problem Class Unconstrained, Equality Constrained, Inequality Constrained, Constrained

JSON Param Yes

Default .9

Description When the actual versus predicted reduction for a trust-region method is above this
threshold and the size of the trial step equals the trust-region radius, we increase the
size of the trust-region radius.

Name ared

Type Real

Valid Value // Any

Problem Class Unconstrained, Equality Constrained, Inequality Constrained, Constrained

JSON Param No

Default std::numeric_limits<Real>::quiet_NaN()

Description Actual reduction in the merit function between the current iterate and the iterate after
taking the trial step,

ared ≡ merit(x)− merit(x + dx).

We use the following merit functions, merit : X Vector→ Real,

Unconstrained f(x),

Equality f(x) + 〈y, g(x)〉+ rho||g(x)||2,
Inequality f(x)− mu · barr(h(x)),

Constrained f(x) + 〈y, g(x)〉+ rho||g(x)||2 − mu · barr(h(x)).

Here, barr refers to the barrier function, which we describe in the section Customized
vector spaces. As a note, we output the value of the merit function at each iteration
under the label merit(x) and ared under the label ared.

Name pred

Type Real

Valid Value // Any

Problem Class Unconstrained, Equality Constrained, Inequality Constrained, Constrained

JSON Param No

Default std::numeric_limits<Real>::quiet_NaN()

Description Predicted reduction in the merit function between the current iterate and the iterate
after taking the trial step,

pred ≡ model(0)− model(dx).

We use the following model functions, model : X Vector→ Real,

Unconstrained

f(x) + 〈∇f(x), dx〉+
1

2
〈H(x)dx, dx〉,
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Equality
f(x) + 〈y, g(x)〉+ rho||g(x)||2
+〈∇f(x) + g′(x)∗y, dx〉
+ 1

2 〈H(x)dx + (g′′(x)dx)∗y, dx〉,

Inequality
f(x)− mu · barr(h(x))
+〈∇f(x)− mu · h′(x)∗L(h(x))−1e, dx〉
+ 1

2 〈H(x)dx + h′(x)∗L(h(x))−1(h′(x)dx ◦ z), dx〉,

Constrained

f(x) + 〈y, g(x)〉+ rho||g(x)||2 − mu · barr(h(x))
+〈∇f(x) + g′(x)∗y− mu · h′(x)∗L(h(x))−1e, dx〉
+ 1

2 〈H(x)dx + (g′′(x)dx)∗y + h′(x)∗L(h(x))−1(h′(x)dx ◦ z), dx〉.

Here, ◦ denotes the Jordan product, prod; L(h(x))−1 denotes the inverse of the linear
operator induced by the Jordan product, linv; e denotes the identity element in
the pseudo-Euclidean-Jordan algebra, id; and barr denotes the barrier function. We
describe each of these operations further in the section Customized vector spaces. As
a note, we output pred at each iteration under the label pred.

Name alpha0

Type Real

Valid Value state.alpha0 >= Real(0.)

Problem Class Unconstrained, Equality Constrained, Inequality Constrained, Constrained

JSON Param Yes

Default 1.

Description Base line-search step length. Generally, our line-search methods search for a scaling
alpha ∈ [0, 2 · alpha0]. Once we find alpha, we increase alpha0 when our search
always brackets to the right and decrease it when our search always brackets to the
left. As a note, we output alpha0 at each iteration under the label alpha0.

Name alpha

Type Real

Valid Value // Any

Problem Class Unconstrained, Equality Constrained, Inequality Constrained, Constrained

JSON Param No

Default std::numeric_limits <Real>::quiet_NaN()

Description Actual line-search step length. After our line-search process completes, we modify our
step dx ← alpha · dx. As a note, we output alpha at each iteration under the label
alpha.

Name c1

Type Real
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Valid Value state.c1 > Real(0.) && state.c1 < Real(1.)

Problem Class Unconstrained, Equality Constrained, Inequality Constrained, Constrained

JSON Param Yes

Default 1e-4

Description Sufficient decrease parameter. When we set algorithm class to LineSearch, we only
take a step when merit(x+alpha ·dx) < merit(x) +c1 ·alpha〈x̃, dx〉 where we define
x̃ as

Unconstrained ∇f(x),

Equality ∇f(x) + g′(x)∗y,

Inequality ∇f(x)− mu · h′(x)∗L(h(x))−1e,

Constrained ∇f(x) + g′(x)∗y− mu · h′(x)∗L(h(x))−1e.

Here, L(h(x))−1 denotes the inverse of the linear operator induced by the Jordan
product, linv; and e denotes the identity element in the pseudo-Euclidean-Jordan
algebra, id. We describe each of these operations further in the section Customized
vector spaces.

Name ls iter

Type Natural

Valid Value // Any

Problem Class Unconstrained, Equality Constrained, Inequality Constrained, Constrained

JSON Param No

Default 0

Description Current number of iterations used in the line search. We use this to determine the
amount of computational effort used by Optizelle during the last iteration. As a note,
we output ls iter at each iteration under the label ls iter.

Name ls iter max

Type Natural

Valid Value state.ls_iter_max > 0

Problem Class Unconstrained, Equality Constrained, Inequality Constrained, Constrained

JSON Param Yes

Default 5

Description Maximum number of iterations used in the line search before checking the sufficient
decrease condition. We use this to tune the amount of work done by the line search.

Name ls iter total

Type Natural
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Valid Value // Any

Problem Class Unconstrained, Equality Constrained, Inequality Constrained, Constrained

JSON Param No

Default 0

Description Total number of iterations ever taken by the line search. We use this to determine the
amount of computational effort used by Optizelle.

Name eps ls

Type Real

Valid Value state.eps_ls > Real(0.)

Problem Class Unconstrained, Equality Constrained, Inequality Constrained, Constrained

JSON Param Yes

Default 1e-2

Description Relative stopping tolerance used by the line search. At the moment, we do not use
this parameter.

Name dir

Type LineSearchDirection

Valid Value // Any

Problem Class Unconstrained, Equality Constrained, Inequality Constrained, Constrained

JSON Param Yes

Default LineSearchDirection::SteepestDescent

Description Line-search direction taken by the line-search algorithm.

Name kind

Type LineSearchKind

Valid Value (state.kind!=LineSearchKind::GoldenSection

|| state.ls_iter_max >= 2) &&

(state.kind!=LineSearchKind::TwoPointA ||

state.kind!=LineSearchKind::TwoPointB ||

state.dir==LineSearchDirection::SteepestDescent)

Problem Class Unconstrained, Equality Constrained, Inequality Constrained, Constrained

JSON Param Yes

Default LineSearchKind::GoldenSection

Description Kind of line-search used in the line-search algorithm.
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Name f diag

Type FunctionDiagnostics

Valid Value // Any

Problem Class Unconstrained, Equality Constrained, Inequality Constrained, Constrained

JSON Param Yes

Default FunctionDiagnostics::NoDiagnostics

Description Function diagnostics on f .

Name L diag

Type FunctionDiagnostics

Valid Value // Any

Problem Class Unconstrained, Equality Constrained, Inequality Constrained, Constrained

JSON Param Yes

Default FunctionDiagnostics::NoDiagnostics

Description Function diagnostics on the Lagrangian.

Name x diag

Type VectorSpaceDiagnostics

Valid Value // Any

Problem Class Unconstrained, Equality Constrained, Inequality Constrained, Constrained

JSON Param Yes

Default VectorSpaceDiagnostics::NoDiagnostics

Description Vector space diagnostics on X.

Name dscheme

Type DiagnosticScheme

Valid Value // Any

Problem Class Unconstrained, Equality Constrained, Inequality Constrained, Constrained

JSON Param Yes

Default DiagnosticScheme::Never

Description Which diagnostic scheme, if any, to employ.
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Name y

Type Y Vector

Valid Value // Any

Problem Class Equality Constrained, Constrained

JSON Param No

Default // Equality constrained

// argmin_y || grad f(x) + g’(x)*y ||

//

// Constrained

// argmin_y || grad f(x) + g’(x)*y - h’(x)*z ||

Description Equality multiplier (dual variable or Lagrange multiplier.)

Name dy

Type Y Vector

Valid Value // Any

Problem Class Equality Constrained, Constrained

JSON Param No

Default Y::init(y_user)

Description Step in the equality multiplier. Every iteration we set y=y+dy.

Name zeta

Type Real

Valid Value state.zeta > Real(0.) && state.zeta < Real(1.)

Problem Class Equality Constrained, Constrained

JSON Param Yes

Default 0.8

Description Fraction of the total trust region used in the quasi-normal step.

Name eta0

Type Real

Valid Value state.eta0 > Real(0.) && state.eta0 < Real(1.)-state.eta1

Problem Class Equality Constrained, Constrained

JSON Param Yes

Default 0.5
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Description Trust-region parameter that bounds the error in the predicted-reduction.

Name rho

Type Real

Valid Value state.rho >= Real(1.)

Problem Class Equality Constrained, Constrained

JSON Param Yes

Default 1.0

Description Penalty parameter for the augmented-Lagrangian. In problems with equality con-
straints, this term appears in the merit functions

Equality f(x) + 〈y, g(x)〉+ rho||g(x)||2,
Constrained f(x) + 〈y, g(x)〉+ rho||g(x)||2 − mu · barr(h(x)).

Here, barr refers to the barrier function, which we describe in the section Customized
vector spaces.

Name rho old

Type Real

Valid Value state.rho_old >= Real(1.)

Problem Class Equality Constrained, Constrained

JSON Param No

Default rho

Description Penalty parameter from the last iteration.

Name rho bar

Type Real

Valid Value state.rho_bar > Real(0.)

Problem Class Equality Constrained, Constrained

JSON Param Yes

Default 1e-8

Description Fixed increase in the penalty parameter in the augmented Lagrangian merit function.

Name eps constr

Type Real

Valid Value state.eps_constr > Real(0.)
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Problem Class Equality Constrained, Constrained

JSON Param Yes

Default 1e-8

Description Relative stopping tolerance for feasibility with respect to the equality constraint re-
ported in opt stop. We satisfy this stopping criteria when

‖g(x)‖ < eps constr · norm gxtyp.

At each iteration, we output the norm on the left of the inequality under the label
||g(x)||. Note, since this value tunes a relative stopping criteria, if we start with a
feasible solution, we need to adjust this value to be something like 1.0. This states
that we do not seek relative improvement in the infeasibility.

Name xi qn

Type Real

Valid Value state.xi_qn > Real(0.) && state.xi_qn < Real(1.)

Problem Class Equality Constrained, Constrained

JSON Param Yes

Default 1e-4

Description Relative stopping tolerance for the augmented system solve associated with the quasi-
Newton step.

Name xi pg

Type Real

Valid Value state.xi_pg > Real(0.) && state.xi_pg < Real(1.)

Problem Class Equality Constrained, Constrained

JSON Param Yes

Default 1e-4

Description Relative stopping tolerance for the augmented system solve associated with the pro-
jection of the gradient prior to solving the tangential subproblem.

Name xi proj

Type Real

Valid Value state.xi_proj > Real(0.) && state.xi_proj < Real(1.)

Problem Class Equality Constrained, Constrained

JSON Param Yes

Default 1e-4
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Description Relative stopping tolerance for the augmented system solve associated with the null-
space projection of the iterate in the tangential subproblem.

Name xi tang

Type Real

Valid Value state.xi_tang > Real(0.) && state.xi_tang < Real(1.)

Problem Class Equality Constrained, Constrained

JSON Param Yes

Default 1e-4

Description Relative stopping tolerance for the augmented system solve associated with the tan-
gential step computation after solving the tangential subproblem.

Name xi lmh

Type Real

Valid Value state.xi_lmh > Real(0.) && state.xi_lmh < Real(1.)

Problem Class Equality Constrained, Constrained

JSON Param Yes

Default 1e-4

Description Relative stopping tolerance for the augmented system solve associated with the equality
multiplier computation.

Name xi all

Type Function(Real)

Valid Value // state.xi_all > Real(0.) && state.xi_all < Real(1.)

Problem Class Equality Constrained, Constrained

JSON Param Yes

Default // None

Description Relative stopping tolerance for all of the augmented system solves, xi qn, xi pg,
xi proj, xi proj, xi tang, and xi lmh.

Name xi lmg

Type Real

Valid Value state.xi_lmg > Real(0.)

Problem Class Equality Constrained, Constrained

JSON Param Yes
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Default 1e4

Description Absolute tolerance on the residual of the equality multiplier solve.

Name xi 4

Type Real

Valid Value state.xi_4 > Real(1.)

Problem Class Equality Constrained, Constrained

JSON Param Yes

Default 2.

Description Tolerance for how much error is acceptable after computing the tangential step given
the result from the tangential subproblem.

Name rpred

Type Real

Valid Value // Any

Problem Class Equality Constrained, Constrained

JSON Param No

Default std::numeric_limits<Real>::quiet_NaN()

Description Residual term in the predicted reduction. We use this quantity to determine if we
computed a tangential step that is accurate enough.

Name PSchur left type

Type Operators

Valid Value state.PSchur_left_type == Operators::Identity ||

state.PSchur_left_type == Operators::UserDefined

Problem Class Equality Constrained, Constrained

JSON Param Yes

Default Operators::Identity

Description Left preconditioner for the augmented system. For a full discussion of this precondi-
tioner, see the section (Optional) Define the preconditioners.

Name PSchur right type

Type Operators

Valid Value state.PSchur_right_type == Operators::Identity ||

state.PSchur_right_type == Operators::UserDefined
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Problem Class Equality Constrained, Constrained

JSON Param Yes

Default Operators::Identity

Description Right preconditioner for the augmented system. For a full discussion of this precondi-
tioner, see the section (Optional) Define the preconditioners.

Name augsys iter max

Type Natural

Valid Value state.augsys_iter_max > 0

Problem Class Equality Constrained, Constrained

JSON Param Yes

Default 100

Description Maximum number of GMRES iterations allowed when solving an augmented system.

Name augsys rst freq

Type Natural

Valid Value // Any

Problem Class Equality Constrained, Constrained

JSON Param Yes

Default 0

Description How often we restart the augmented system solve. We restart GMRES every specified
number of iterations in order to save memory. When 0, we do not restart.

Name augsys qn iter

Type Natural

Valid Value // Any

Problem Class Equality Constrained, Constrained

JSON Param No

Default 0

Description Number of iterations taken during the last iterate by the augmented system solve for
the quasi-normal step.

Name augsys pg iter

Type Natural
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Valid Value // Any

Problem Class Equality Constrained, Constrained

JSON Param No

Default 0

Description Number of iterations taken during the last iterate by the augmented system solve when
projecting the gradient prior to the tangential subproblem.

Name augsys proj iter

Type Natural

Valid Value // Any

Problem Class Equality Constrained, Constrained

JSON Param No

Default 0

Description Number of iterations taken during the last iterate by the augmented system solve
during the nullspace projection in the tangential subproblem. Since there are likely
many projections, this is the total number of iterations over all projections.

Name augsys tang iter

Type Natural

Valid Value // Any

Problem Class Equality Constrained, Constrained

JSON Param No

Default 0

Description Number of iterations taken during the last iterate by the augmented system solve
during the tangential step.

Name augsys lmh iter

Type Natural

Valid Value // Any

Problem Class Equality Constrained, Constrained

JSON Param No

Default 0

Description Number of iterations taken during the last iterate by the augmented system solve
during the equality multiplier solve.
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Name augsys qn iter total

Type Natural

Valid Value // Any

Problem Class Equality Constrained, Constrained

JSON Param No

Default 0

Description Total number of iterations taken by the augmented system solve for the quasi-normal
step.

Name augsys pg iter total

Type Natural

Valid Value // Any

Problem Class Equality Constrained, Constrained

JSON Param No

Default 0

Description Total number of iterations taken by the augmented system solve when projecting the
gradient prior to the tangential subproblem.

Name augsys proj iter total

Type Natural

Valid Value // Any

Problem Class Equality Constrained, Constrained

JSON Param No

Default 0

Description Total number of iterations taken by the augmented system solve during the nullspace
projection in the tangential subproblem.

Name augsys tang iter total

Type Natural

Valid Value // Any

Problem Class Equality Constrained, Constrained

JSON Param No

Default 0
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Description Total number of iterations taken by the augmented system solve during the tangential
step.

Name augsys lmh iter total

Type Natural

Valid Value // Any

Problem Class Equality Constrained, Constrained

JSON Param No

Default 0

Description Total number of iterations taken by the augmented system solve during the equality
multiplier solve.

Name augsys iter total

Type Natural

Valid Value // Any

Problem Class Equality Constrained, Constrained

JSON Param No

Default 0

Description Total number of iterations taken by all augmented system solves.

Name augsys qn err

Type Real

Valid Value // Any

Problem Class Equality Constrained, Constrained

JSON Param No

Default 0.

Description Error in the last augmented system solve for the quasi-normal step.

Name augsys pg err

Type Real

Valid Value // Any

Problem Class Equality Constrained, Constrained

JSON Param No

Default 0.
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Description Error in the last augmented system solve when projecting the gradient prior to the
tangential subproblem.

Name augsys proj err

Type Real

Valid Value // Any

Problem Class Equality Constrained, Constrained

JSON Param No

Default 0.

Description Error in the last augmented system solve during the nullspace projection in the tan-
gential subproblem. Note, since there are likely many projections during a single
tangential subproblem, this represents the error from the last such solve.

Name augsys tang err

Type Real

Valid Value // Any

Problem Class Equality Constrained, Constrained

JSON Param No

Default 0.

Description Error in the last augmented system solve during the tangential step.

Name augsys lmh err

Type Real

Valid Value // Any

Problem Class Equality Constrained, Constrained

JSON Param No

Default 0.

Description Error in the last augmented system solve during the equality multiplier solve.

Name augsys qn err target

Type Real

Valid Value // Any

Problem Class Equality Constrained, Constrained

JSON Param No
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Default 0.

Description Target error in the last augmented system solve for the quasi-normal step.

Name augsys pg err target

Type Real

Valid Value // Any

Problem Class Equality Constrained, Constrained

JSON Param No

Default 0.

Description Target error in the last augmented system solve when projecting the gradient prior to
the tangential subproblem.

Name augsys proj err target

Type Real

Valid Value // Any

Problem Class Equality Constrained, Constrained

JSON Param No

Default 0.

Description Target error in the last augmented system solve during the nullspace projection in the
tangential subproblem. Note, since there are likely many projections during a single
tangential subproblem, this represents the target error from the last such solve.

Name augsys tang err target

Type Real

Valid Value // Any

Problem Class Equality Constrained, Constrained

JSON Param No

Default 0.

Description Target error in the last augmented system solve during the tangential step.

Name augsys lmh err target

Type Real

Valid Value // Any

Problem Class Equality Constrained, Constrained
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JSON Param No

Default 0.

Description Target error in the last augmented system solve during the equality multiplier solve.

Name augsys qn failed

Type Real

Valid Value // Any

Problem Class Equality Constrained, Constrained

JSON Param No

Default 0.

Description Number of failed quasinormal augmented system solves.

Name augsys pg failed

Type Real

Valid Value // Any

Problem Class Equality Constrained, Constrained

JSON Param No

Default 0.

Description Number of failed projected gradient augmented system solves.

Name augsys proj failed

Type Real

Valid Value // Any

Problem Class Equality Constrained, Constrained

JSON Param No

Default 0.

Description Number of failed nullspace projection augmented system solves.

Name augsys tang failed

Type Real

Valid Value // Any

Problem Class Equality Constrained, Constrained

JSON Param No
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Default 0.

Description Number of tangential step augmented system solves.

Name augsys lmh failed

Type Real

Valid Value // Any

Problem Class Equality Constrained, Constrained

JSON Param No

Default 0.

Description Number of equality multiplier augmented system solves.

Name augsys failed total

Type Real

Valid Value // Any

Problem Class Equality Constrained, Constrained

JSON Param No

Default 0.

Description Total number of failed augmented system solves. In short, the theory for convergence
to a local minima requires that augmented system solves meet their specified tolerance.
Sometimes, a lower tolerance can be used and these tolerances are controlled by xi all,
xi qn, xi pg, xi proj, xi tang, and xi lmh. However, even with a lower specified
tolerance, the inexact composite step SQP method can still require a tighter tolerance
in order to guarantee convergence. Generally, the algorithms are tolerant to a few failed
solves. However, if there are failed solves at every iteration, then there’s a problem with
the given preconditioner or no preconditioner was specified. See the section (Optional)
Define the preconditioners for more information on how to implement an appropriate
preconditioner.

Name g x

Type Y Vector

Valid Value // Any

Problem Class Equality Constrained, Constrained

JSON Param No

Default Y::init(y_user)

Description Equality constraint evaluated a x, g(x). We use this in the quasi-normal step as well
as in the computation of the linear Taylor series at x in the direction dx n. As a note,
we output the norm of this vector each iteration under the label ||g(x)||.
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Name norm gxtyp

Type Real

Valid Value state.norm_gxtyp >= Real(0.)

|| (state.iter==1 && state.norm_gxtyp!=state.norm_gxtyp)

Problem Class Equality Constrained, Constrained

JSON Param No

Default std::numeric_limits<Real>::quiet_NaN()

Description Norm of a typical equality constraint, which we define to be the norm of the equality
constraint at the first iteration. Sometimes, we use norm gxtyp with the stopping
criteria described in eps constr. Specifically, we only refer to this quantity when
eps kind is set to Relative. When eps kind is set to Absolute, we ignore this value
and instead use 1.0.

Name norm gpsgxtyp

Type Real

Valid Value state.norm_gpsgxtyp >= Real(0.)

|| (state.iter==1 &&

state.norm_gpsgxtyp!=state.norm_gpsgxtyp)

Problem Class Equality Constrained, Constrained

JSON Param No

Default std::numeric_limits<Real>::quiet_NaN()

Description Norm of a typical value of g′(x)∗g(x), which we define to be the value of this quan-
tity at the first iteration. When we compute the quasinormal step, we compute the
Cauchy point by finding the least-squares solution to the linearized equality constraint,
min∂x

1
2‖g
′(x)∂x + g(x)‖2. Here, the gradient is g′(x)∗g′(x)∂x + g′(x)∗g(x). Now,

for the Cauchy point, we start with ∂x = 0, so the steepest descent direction be-
comes ∂x = −g′(x)∗g(x). We find the Cauchy point, by doing an exact line-search
along this direction in the objective for the least-squares problem above. Now, when
g′(x)∗g(x) = 0, we sit at a local minima to the least-squares problem above. Gen-
erally, this is bad since we’re not feasible and we don’t have good information as to
where to move to improve our infeasibility. Nevertheless, the tangential step will likely
move us off that point unless we’ve already achieved optimality with respect to the
Lagrangian. In any case, we require norm gpsgxtyp to determine when the relative
norm of g′(x)∗g(x) is small and hence fall into this local minima.

Name gpxdxn p gx

Type Y Vector

Valid Value // Any

Problem Class Equality Constrained, Constrained

JSON Param No
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Default Y::init(y_user)

Description Linear Taylor series at x in the direction dx n. We use this both in the predicted
reduction as well as the residual predicted reduction.

Name gpxdxt

Type Y Vector

Valid Value // Any

Problem Class Equality Constrained, Constrained

JSON Param No

Default Y::init(y_user)

Description Derivative of the constraint applied to the tangential step this is used in the residual
predicted reduction.

Name norm gpxdxnpgx

Type Real

Valid Value // Any

Problem Class Equality Constrained, Constrained

JSON Param No

Default std::numeric_limits<Real>::quiet_NaN()

Description Norm of gpxdxn p gx. We use this in the penalty parameter computation and pre-
dicted reduction.

Name dx n

Type X Vector

Valid Value // Any

Problem Class Equality Constrained, Constrained

JSON Param No

Default X::init(x_user)

Description Normal step. We output the norm of this vector at each iteration under the label
||dx n||.

Name dx ncp

Type X Vector

Valid Value // Any
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Problem Class Equality Constrained, Constrained

JSON Param No

Default X::init(x_user)

Description Cauchy point for normal step.

Name dx t

Type X Vector

Valid Value // Any

Problem Class Equality Constrained, Constrained

JSON Param No

Default X::init(x_user)

Description (Corrected) tangential step. We output the norm of this vector at each iteration under
the label ||dx t||.

Name dx t uncorrected

Type X Vector

Valid Value // Any

Problem Class Equality Constrained, Constrained

JSON Param No

Default X::init(x_user)

Description Tangential step prior to correction.

Name dx tcp uncorrected

Type X Vector

Valid Value // Any

Problem Class Equality Constrained, Constrained

JSON Param No

Default X::init(x_user)

Description Cauchy point for tangential step prior to correction.

Name H dxn

Type X Vector

Valid Value // Any
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Problem Class Equality Constrained, Constrained

JSON Param No

Default X::init(x_user)

Description Hessian applied to the normal step. We require this in W gradpHdxn as well as the
predicted reduction.

Name W gradpHdxn

Type X Vector

Valid Value // Any

Problem Class Equality Constrained, Constrained

JSON Param No

Default X::init(x_user)

Description Quantity grad f(x)+g′(x)∗y+Hdx n projected into the null-space of the constraints.
We require this in the tangential subproblem and the predicted reduction.

Name H dxtuncorrected

Type X Vector

Valid Value // Any

Problem Class Equality Constrained, Constrained

JSON Param No

Default X::init(x_user)

Description Hessian applied to the uncorrected tangential step. We require this in the predicted
reduction.

Name g diag

Type FunctionDiagnostics

Valid Value // Any

Problem Class Equality Constrained, Constrained

JSON Param Yes

Default FunctionDiagnostics::NoDiagnostics

Description Function diagnostics on g.

Name y diag

Type VectorSpaceDiagnostics
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Valid Value // Any

Problem Class Equality Constrained, Constrained

JSON Param Yes

Default VectorSpaceDiagnostics::NoDiagnostics

Description Vector space diagnostics on Y.

Name qn stop

Type QuasinormalStop

Valid Value // Any

Problem Class Equality Constrained, Constrained

JSON Param No

Default QuasinormalStop::Feasible

Description Reason why the quasinormal problem exited.

Name z

Type Z Vector

Valid Value // Any

Problem Class Inequality Constrained, Constrained

JSON Param No

Default // mu inv(L(h(x))) e

Description Inequality multiplier (dual variable or Lagrange multiplier.)

Name dz

Type Z Vector

Valid Value // Any

Problem Class Inequality Constrained, Constrained

JSON Param No

Default Z::init(z_user)

Description Step in the inequality multiplier. Every iteration we set z=z+dz.

Name h x

Type Z Vector
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Valid Value // Any

Problem Class Inequality Constrained, Constrained

JSON Param No

Default Z::init(z_user)

Description The inequality constraint evaluated at x. In theory, we can always just evaluate this
when we need it. However, we require its computation both in the gradient as well
as Hessian calculations. More specifically, when computing with SDP constraints, we
require a factorization of this quantity. By caching it, we have the ability to cache the
factorization.

Name mu

Type Real

Valid Value state.mu > Real(0.)

Problem Class Inequality Constrained, Constrained

JSON Param Yes

Default 1.0

Description Interior point parameter. We use this as the target for the interior-point parameter
estimate mu est. As the interior point method progresses, we drive this value toward
zero. As a note, we output mu at each iteration under the label mu.

Name mu est

Type Real

Valid Value state.mu_est == state.mu_est || state.iter == 1

Problem Class Inequality Constrained, Constrained

JSON Param No

Default std::numeric_limits<Real>::quiet_NaN()

Description Current interior-point estimate. We define this as

mu est ≡ 〈z, h x〉
〈e, e〉

.

As a note, we output mu est at each iteration under the label mu est. Also note,
we require this value to be small relative to mu typ for convergence and control the
relative decrease required with the parameter eps mu.

Name mu typ

Type Real

Valid Value state.mu_typ > Real(0.) || state.iter==1
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Problem Class Inequality Constrained, Constrained

JSON Param No

Default std::numeric_limits<Real>::quiet_NaN()

Description Typical value for mu, which we define as the value of mu est at the first iteration.
Sometimes, we use mu typ with the stopping criteria described in eps mu. Specifically,
we only refer to this quantity when eps kind is set to Relative. When eps kind is set
to Absolute, we ignore this value and instead use 1.0.

Name eps mu

Type Real

Valid Value state.eps_mu > Real(0.)

Problem Class Inequality Constrained, Constrained

JSON Param Yes

Default 1e-8

Description Relative stopping tolerance for satisfying the complementary slackness condition for
the inequality constraint. We satisfy this stopping criteria when

1. |mu− mu typ · eps mu| ≤ mu typ · eps mu

2. |mu− mu est| ≤ mu

Name sigma

Type Real

Valid Value state.sigma > Real(0.) && state.sigma < Real(1.)

Problem Class Inequality Constrained, Constrained

JSON Param Yes

Default 0.1

Description Rate that we decrease the interior point parameter.

Name gamma

Type Real

Valid Value state.gamma > Real(0.) && state.gamma < Real(1.)

Problem Class Inequality Constrained, Constrained

JSON Param Yes

Default 0.99

Description How close we move to the boundary during a single step. A step of 1.0 allows a step
to touch the boundary of the inequality constraint in a single step, which is disallowed
by the interior point algorithm.
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Name alpha z

Type Real

Valid Value // Any

Problem Class Inequality Constrained, Constrained

JSON Param No

Default std::numeric_limits <Real>::quiet_NaN()

Description How much we truncate dz in an interior point method in order to maintain strict
feasibility. When 1.0, we do not truncate and take a full step. We output alpha z at
each iteration under the label alpha z.

Name h diag

Type FunctionDiagnostics

Valid Value // Any

Problem Class Inequality Constrained, Constrained

JSON Param Yes

Default FunctionDiagnostics::NoDiagnostics

Description Function diagnostics on h.

Name z diag

Type VectorSpaceDiagnostics

Valid Value // Any

Problem Class Inequality Constrained, Constrained

JSON Param Yes

Default VectorSpaceDiagnostics::NoDiagnostics

Description Vector space diagnostics on Z.

98



5
Output

Optizelle generates a series of diagnostics while running that give information about the behavior and perfor-
mance of the underlying algorithm. This information is organized into columns that are exactly 12 characters
wide. When no information is available, we print a single dot, .. In this way, each column always has some
sort of information, which makes the output easy to parse using standard Unix utilities such as cut or awk.
For example, to only print the iteration, objective value, and norm of the step on the Rosenbrock example,
we use the following commands on POSIX compliant systems:

./rosenbrock tr_newton.json | awk ’{printf "%-12s%-12s%-12s\n", $1,$2,$4}’

and

./rosenbrock tr_newton.json | cut -c1-12,13-24,37-48

As far as the information in the columns themselves, we detail their meaning below. In terms of conver-
gence, we require the values ||grad||, ||g(x)||, and mu est be small relative to their starting value and
control the relative decrease required with the parameters eps grad, eps constr, and eps mu, respectively. In
addition, if the value ||dx|| becomes too small relative to its starting value, we terminate the optimization.
We control the amount of relative decrease allowed in ||dx|| with the parameter eps dx.

Name iter

State Param iter

Problem Class Unconstrained, Equality Constrained, Inequality Constrained, Constrained

Min msg level 1

Description Current optimization iteration. If the value of this entry is *, then either a trust-region
algorithm has rejected a step due to an unfavorable actual versus predicted reduction
or a line-search algorithm has rejected a step due to a lack of sufficient decrease. In
a trust-region method, we tune the rejection of steps with the parameter eta1. In a
line-search method, we tune the rejection of steps with the parameter c1.

Name f(x)

State Param f x

Problem Class Unconstrained, Equality Constrained, Inequality Constrained, Constrained

Min msg level 1

Description Value of the objective function at the start of the specified iteration.
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Name ||grad||

State Param None

Problem Class Unconstrained, Equality Constrained, Inequality Constrained, Constrained

Min msg level 1

Description Norm of the gradient of either the objective function or the Lagrangian, which we
describe in the description of eps grad. We use this value within our gradient stopping
condition described by the parameter eps grad. In general, we need this value to be
small relative to the starting value for convergence.

Name ||dx||

State Param None

Problem Class Unconstrained, Equality Constrained, Inequality Constrained, Constrained

Min msg level 1

Description Norm of the step taken during the last iteration. We calculate this value by taking the
norm of the value found in dx and use this within our stopping condition controlled
by eps dx. As a safeguard, we exit the optimization if this value becomes too small
relative to the starting value.

Name ||g(x)||

State Param None

Problem Class Equality Constrained, Constrained

Min msg level 1

Description Norm of the equality constraint at the start of the optimization iteration, which we
calculate in g x. We use this value within our equality constraint feasibility stopping
condition described by the parameter eps constr. In short, we need this value to be
small relative to the starting value for convergence. If the starting value is already
acceptably small, then we have started with a feasible solution. In this case, we may
need to adjust eps constr to something like 1.0, which states that we do not seek
relative improvement in the infeasibility.

Name mu est

State Param mu est

Problem Class Inequality Constrained, Constrained

Min msg level 1

Description Current interior-point estimate. We use this value within our complementary slackness
stopping condition described by the parameter eps mu. In short, we need this value to
be small relative to its starting value for convergence. We control the relative decrease
required with the parameter eps mu.

Name merit(x)

State Param None
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Problem Class Unconstrained, Equality Constrained, Inequality Constrained, Constrained

Min msg level 2

Description Value of the merit function at the start of the specified iteration. We specify the
various merit functions in the description of the parameter ared.

Name trunc iter

State Param trunc iter

Problem Class Unconstrained, Equality Constrained, Inequality Constrained, Constrained

Min msg level 2

Description Number of iterations used by truncated CG when solving the optimality system. We
tune the maximum number of truncated CG iterations with the parameter trunc iter max.

Name trunc err

State Param trunc err

Problem Class Unconstrained, Equality Constrained, Inequality Constrained, Constrained

Min msg level 2

Description Error in truncated CG when solving the optimality system. We control this error with
the parameter eps trunc and indirectly affect it with the parameters trunc orthog storage max

and trunc orthog iter max.

Name trunc stop

State Param trunc stop

Problem Class Unconstrained, Equality Constrained, Inequality Constrained, Constrained

Min msg level 2

Description Why truncated CG terminated. Although we shorten the strings, we describe each
possible outcome in the enumerated type TruncatedStop.

Name ared

State Param ared

Problem Class Unconstrained, Equality Constrained, Inequality Constrained, Constrained

Min msg level 2

Description Actual reduction in the merit function between the current iterate and the iterate after
taking the trial step.

Name pred

State Param pred

Problem Class Unconstrained, Equality Constrained, Inequality Constrained, Constrained
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Min msg level 2

Description Predicted reduction in the merit function between the current iterate and the iterate
after taking the trial step.

Name ared/pred

State Param None

Problem Class Unconstrained, Equality Constrained, Inequality Constrained, Constrained

Min msg level 2

Description Actual versus predicted reduction. Simply, we divide the outputs ared and pred. For
a perfect model, this ratio is 1.0.

Name delta

State Param delta

Problem Class Unconstrained, Equality Constrained, Inequality Constrained, Constrained

Min msg level 2

Description Trust-region radius.

Name ls iter

State Param ls iter

Problem Class Unconstrained, Equality Constrained, Inequality Constrained, Constrained

Min msg level 2

Description Number of iterations taken by the line search. We tune the maximum number of line-
search iterations with the parameter ls iter max and indirectly control the number
of iterations with the parameter eps ls.

Name alpha

State Param alpha

Problem Class Unconstrained, Equality Constrained, Inequality Constrained, Constrained

Min msg level 2

Description Actual line-search step length.

Name alpha0

State Param alpha0

Problem Class Unconstrained, Equality Constrained, Inequality Constrained, Constrained

Min msg level 2

Description Base line-search step length.
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Name qn stop

State Param qn stop

Problem Class Equality Constrained, Constrained

Min msg level 2

Description Reason why the quasinormal problem exited.

Name aug fail

State Param augsys failed total

Problem Class Equality Constrained, Constrained

Min msg level 2

Description Total number of failed augmented system solves.

Name mu

State Param mu

Problem Class Inequality Constrained, Constrained

Min msg level 2

Description Interior point parameter.

Name alpha x

State Param alpha x

Problem Class Inequality Constrained, Constrained

Min msg level 2

Description Amount we truncate dx in order to maintain feasibility with respect to the inequality
constraint.

Name alpha z

State Param alpha z

Problem Class Inequality Constrained, Constrained

Min msg level 2

Description Amount we truncate dz in order to maintain feasibility with respect to the inequality
multiplier. Note, we only reference this when we are using a primal-dual interior point
method.

Name safe fail

State Param safeguard failed
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Problem Class Inequality Constrained, Constrained

Min msg level 2

Description Number of failed safe-guard steps during the last iteration. Note, we only reference
this when using a trust-region method.

Name alpha x qn

State Param alpha x qn

Problem Class Constrained

Min msg level 2

Description Amount we truncate dx n in order to maintain feasibility with respect to the inequality
constraint.

Name glb itr tot

State Param glob iter total

Problem Class Unconstrained, Equality Constrained, Inequality Constrained, Constrained

Min msg level 3

Description Total number of globalization iterations taken across all iterations.

Name trc itr tot

State Param trunc iter total

Problem Class Unconstrained, Equality Constrained, Inequality Constrained, Constrained

Min msg level 3

Description Total number of iterations used by truncated CG when solving the optimality system.
We typically use this to determine how many Hessian-vector products we’ve computed
over the entire optimization run.

Name ||dx n||

State Param Equality Constrained, Constrained

Problem Class None

Min msg level 3

Description Norm of the quasinormal step, dx n, taken during the last iteration.

Name ||dx t||

State Param Equality Constrained, Constrained

Problem Class None

Min msg level 3
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Description Norm of the tangential step, dx t, taken during the last iteration.

Name qn iter

State Param augsys qn iter

Problem Class Equality Constrained, Constrained

Min msg level 3

Description Number of iterations taken during the last iterate by the augmented system solve for
the quasi-normal step.

Name qn iter tot

State Param augsys qn iter total

Problem Class Equality Constrained, Constrained

Min msg level 3

Description Total number of iterations taken by the augmented system solve for the quasi-normal
step.

Name qn err

State Param augsys qn err

Problem Class Equality Constrained, Constrained

Min msg level 3

Description Error in the last augmented system solve for the quasi-normal step.

Name qn err trg

State Param augsys qn err target

Problem Class Equality Constrained, Constrained

Min msg level 3

Description Target error in the last augmented system solve for the quasi-normal step.

Name qn fail

State Param augsys qn failed

Problem Class Equality Constrained, Constrained

Min msg level 3

Description Number of failed quasinormal augmented system solves.

Name pg iter

State Param augsys pg iter
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Problem Class Equality Constrained, Constrained

Min msg level 3

Description Number of iterations taken during the last iterate by the augmented system solve when
projecting the gradient prior to the tangential subproblem.

Name pg iter tot

State Param augsys pg iter total

Problem Class Equality Constrained, Constrained

Min msg level 3

Description Total number of iterations taken by the augmented system solve when projecting the
gradient prior to the tangential subproblem.

Name pg err

State Param augsys pg err

Problem Class Equality Constrained, Constrained

Min msg level 3

Description Error in the last augmented system solve when projecting the gradient prior to the
tangential subproblem.

Name pg err trg

State Param augsys pg err target

Problem Class Equality Constrained, Constrained

Min msg level 3

Description Target error in the last augmented system solve when projecting the gradient prior to
the tangential subproblem.

Name pg fail

State Param augsys pg failed

Problem Class Equality Constrained, Constrained

Min msg level 3

Description Number of failed projected gradient augmented system solves.

Name pr iter

State Param augsys proj iter

Problem Class Equality Constrained, Constrained

Min msg level 3
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Description Number of iterations taken during the last iterate by the augmented system solve
during the nullspace projection in the tangential subproblem. Since there are likely
many projections, this is the total number of iterations over all projections.

Name pr iter tot

State Param augsys proj iter total

Problem Class Equality Constrained, Constrained

Min msg level 3

Description Total number of iterations taken by the augmented system solve during the nullspace
projection in the tangential subproblem.

Name pr err

State Param augsys proj err

Problem Class Equality Constrained, Constrained

Min msg level 3

Description Error in the last augmented system solve during the nullspace projection in the tan-
gential subproblem. Note, since there are likely many projections during a single
tangential subproblem, this represents the error from the last such solve.

Name pr err trg

State Param augsys proj err target

Problem Class Equality Constrained, Constrained

Min msg level 3

Description Target error in the last augmented system solve during the tangential step.

Name pr fail

State Param augsys proj failed

Problem Class Equality Constrained, Constrained

Min msg level 3

Description Number of failed nullspace projection augmented system solves.

Name tg iter

State Param augsys tang iter

Problem Class Equality Constrained, Constrained

Min msg level 3

Description Number of iterations taken during the last iterate by the augmented system solve
during the tangential step.
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Name tg iter tot

State Param augsys tang iter total

Problem Class Equality Constrained, Constrained

Min msg level 3

Description Total number of iterations taken by the augmented system solve during the tangential
step.

Name tg err

State Param augsys tang err

Problem Class Equality Constrained, Constrained

Min msg level 3

Description Error in the last augmented system solve during the tangential step.

Name tg err trg

State Param augsys tang err target

Problem Class Equality Constrained, Constrained

Min msg level 3

Description Target error in the last augmented system solve during the tangential step.

Name tg fail

State Param augsys tang failed

Problem Class Equality Constrained, Constrained

Min msg level 3

Description Number of failed tangential step augmented system solves.

Name lm iter

State Param augsys lmh iter

Problem Class Equality Constrained, Constrained

Min msg level 3

Description Number of iterations taken during the last iterate by the augmented system solve
during the equality multiplier solve.

Name lm iter tot

State Param augsys lmh iter total

Problem Class Equality Constrained, Constrained
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Min msg level 3

Description Total number of iterations taken by the augmented system solve during the equality
multiplier solve.

Name lm err

State Param augsys lmh err

Problem Class Equality Constrained, Constrained

Min msg level 3

Description Error in the last augmented system solve during the equality multiplier solve.

Name lm err trg

State Param augsys lmh err target

Problem Class Equality Constrained, Constrained

Min msg level 3

Description Target error in the last augmented system solve during the equality multiplier solve.

Name lm fail

State Param augsys lmh failed

Problem Class Equality Constrained, Constrained

Min msg level 3

Description Number of failed equality multiplier augmented system solves.

Name aug itr tot

State Param augsys iter total

Problem Class Equality Constrained, Constrained

Min msg level 3

Description Total number of iterations taken by all augmented system solves. We use this to help
determine the overall expense of the augmented system solver and its precondition.
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6
Advanced API

Optizelle contains many additional features such as customizing the output and defining custom vector spaces.
We detail these features below.

6.1 User-defined messaging

By default, we output messages from Optizelle to stdout. However, in some environments, we require different
behavior. For example,

• When we use Optizelle in a program with a GUI, we may not to display the output to a separate window.

• When using MPI in a distributed, parallel environment we likely want to restrict our output to only the
rank 0 processor.

In these cases, we want to define a new messaging object. Messaging objects are simply functions that accept
a string and print it accordingly. In code, we specify this object as:

Language C++

Structure Optizelle::Messaging::t

Interface Function matches type

Code namespace Optizelle{

// Defines how we output messages to the user

namespace Messaging {

// At its core, we take in a string and then write it somewhere

typedef std::function<void(std::string const & msg)> t;

}

}

Language Python

Structure Optizelle.Messaging.t

Interface Function matches type

Code def t(msg):

"""At its core, we take in a string and then write it somewhere"""

raise Optizelle.Exception.t("Undefined messaging function")
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Language MATLAB/Octave

Structure Optizelle.Messaging.t

Interface Function matches type

Code % At its core, we take in a string and then write it somewhere

Optizelle.Messaging.t = @(x)error(’Undefined messaging function’);

Once we define a custom messaging object, we are free to pass it to Optizelle, which occurs when we call the
function getMin. We describe this process in the section Call the optimization solver. As an example, we
modify the messaging object in our Rosenbrock advanced API example:

Language C++

Code // Define a custom messaging object

void mymessaging(std::string const & msg) {

std::cout << "PRINT: " << msg << std::endl;

}

Language Python

Code # Define a custom messaging object

def mymessaging(msg):

"""Prints out normal diagnostic information"""

sys.stdout.write("PRINT: %s\n" %(msg))

Language MATLAB/Octave

Code % Define a custom messaging object

function MyMessaging(msg)

fprintf(’PRINT: %s\n’,msg);

end

6.2 Handling errors

In general, Optizelle handles algorithmic errors gracefully and will exit the optimization with the current best
solution. However, errors in the problem setup or functions provided by the user cause Optizelle to exit its
routines immediately.

The mechanism for handling errors depends on the type and interface. For errors that originate with
Optizelle, we use the following scheme

Language C++

Structure Optizelle::Exception::t

Interface Exception handling

Code namespace Optizelle {namespace Exception {

struct t : public std::runtime_error {

using std::runtime_error::runtime_error;

};

}}
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Language Python

Structure Optizelle.Exception.t

Interface Exception handling

Code class t(Exception):

"""Type for Optizell’s exceptions"""

pass

Language MATLAB/Octave

Structure error

Interface Native error function

For errors that originate within the user code, we exit Optizelle and propagate the original error back to
parent code. Typically, the best way to throw an error in the user code is by exceptions in C++ and Python
and the error function in MATLAB/Octave. As an example, reading an invalid parameter from file raises
an Optizelle error. We catch this error with the following code

Language C++

Code // Read parameters from file

try {

Optizelle::json::Unconstrained <Real,XX>::read(fname,state);

} catch(Optizelle::Exception::t const & e) {

// Convert the error message to a string

msg = Optizelle::Exception::to_string(e);

// Print the error message directly

Optizelle::Exception::to_stderr(e);

}

Language Python

Code # Read parameters from file

try:

Optizelle.json.Unconstrained.read(XX,fname,state);

except Optizelle.Exception.t as e:

# Convert the error message to a string

msg = e.message

# Print the error message directly

print e

Language MATLAB/Octave

Code try

state = Optizelle.json.Unconstrained.read(XX,fname,state);

catch e

% Convert the error message into a string

msg = e.message;

% Print the message directly

disp(e.message);

end
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6.3 Customized vector spaces

In continuous optimization, we most often optimize over a simple vector of numbers in Rm. If that’s the case,
we provide a reasonable implementation of this vector space and describe it in section Import or define the
appropriate vector spaces. However, in some situations we want to use a different space. For example:

• In PDE constrained optimization, we may want to optimize over a space of functions such as L2(Ω).

• In certain relaxations to discrete optimization problems, we must optimize over the space of symmetric,
positive definite matrices.

• When the variables in Rm have radically different scalings, we may need to alter the inner product to
normalize our variables.

• On large-scale problems with billions of variables, we must store the vectors in parallel and compute
operations using a messaging system such as MPI.

In each of these cases, we need to define a custom vector space for our problem. Each custom vector space
requires us to define the following operations:

Name init

Definition C++ init(x)

init← ξ(W ) where x ∈W
Python init(x)

init← ξ(W ) where x ∈W
MATLAB/Octave init(x)

init← ξ(W ) where x ∈W

Description Initializes memory for a new vector. Here, the function ξ : {X,Y, Z} → X ∪ Y ∪ Z
denotes a choice function that selects an arbitrary element from the appropriate set.
Essentially, this states that we want a valid element in the vector space, but we don’t
care what the element is.

Name copy

Definition C++ copy(x,y)

y ← x

Python copy(x,y)

y ← x

MATLAB/Octave copy(x)

copy← x

Description In C++ and Python, a shallow copy of the vector x into the vector y. In MAT-
LAB/Octave, return the vector x

.

Name scal

Definition C++ scal(alpha,x)

x← αx

Python scal(alpha,x)

x← αx

MATLAB/Octave scal(alpha,x)

scal← αx
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Description In C++ and Python, overwrite x with αx. In MATLAB/Octave, return αx.

Name axpy

Definition C++ axpy(alpha,x,y)

y ← αx+ y

Python axpy(alpha,x,y)

y ← αx+ y

MATLAB/Octave axpy(alpha,x,y)

axpy← αx+ y

Description In C++ and Python, overwrite y with αx+ y. In MATLAB/Octave, return αx+ y.

Name innr

Definition C++ innr(x,y)

innr ← 〈x, y〉
Python innr(x,y)

innr ← 〈x, y〉
MATLAB/Octave innr(x,y)

innr ← 〈x, y〉

Description Return the inner product between x and y.

Name zero

Definition C++ zero(x)

x← 0

Python zero(x)

x← 0

MATLAB/Octave zero(x)

zero← 0

Description In C++ and Python, overwrite x with 0. In MATLAB/Octave, return 0. Note, this
is not necessarily the same as scal(0.,x) since, in practice, x may contain NaNs and
Infs. As such, we consider zero to be a safe operation that returns 0. whereas scal

may be an unsafe operation.

Name rand

Definition C++ rand(x)

x← ψ(W ) where x ∈W
Python rand(x)

x← ψ(W ) where x ∈W
MATLAB/Octave rand(x)

rand← ψ(W ) where x ∈W
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Description In C++ and Python, overwrite x with a random vector. In MATLAB/Octave, return
a random vector. Here, the function ψ : {X,Y, Z} → X ∪ Y ∪ Z denotes a stochastic
choice function that randomly selects an element from the appropriate set. Essentially,
this states that we want a valid, random element in the vector space. Primarily, we
use these vectors for our diagnostic tests controlled by the parameters f diag, g diag,
and h diag.

In addition, the vector space associated with the codomain of the inequality constraints, Z, requires the
following operations:

Name prod

Definition C++ prod(x,y,z)

z ← x ◦ y
Python prod(x,y,z)

z ← x ◦ y
MATLAB/Octave prod(x,y)

prod← x ◦ y

Description In C++ and Python, overwrite z with x ◦ y. In MATLAB/Octave, return x ◦ y. Here,
◦ denotes a pseudo-Jordan product between two elements. We say pseudo-Jordan in
the sense that we do not require a full Euclidean-Jordan algebra. Instead, we drop the
requirement for commutativity. Hence, for linear bound constraints, we define that

[x ◦ y]i = xiyi.

Hence, the product denotes the pointwise or Hadamard product. For second-order
cone constraints, we define that[

x0
x̄

]
◦
[
y0
ȳ

]
=

[
x0y0 + x̄T ȳ
x0ȳ + y0x̄

]
.

For semidefinite programming, we have that

X ◦ Y = XY.

Alternatively, we can define that

X ◦ Y =
XY + Y X

2
,

but the inverse operation linv below becomes far less efficient.

Name id

Definition C++ id(x)

x← e

Python id(x)

x← e

MATLAB/Octave id(x)

id← e

Description In C++ and Python, overwrite x with e. In MATLAB/Octave, return e. In this
function, e denotes the identity element for the Jordan algebra. Hence, this function
creates element e so that x ◦ e = x. For linear bound constraints, e denotes the vector

of all ones. For second-order cone constraints, e =
[
1 0 . . . 0

]T
. For semidefinite

constraints, e = I
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Name linv

Definition C++ linv(x,y,z)

z ← L(x)−1y

Python linv(x,y,z)

z ← L(x)−1y

MATLAB/Octave linv(x,y)

linv← L(x)−1y

Description In C++ and Python, overwrite z with L(x)−1y. In MATLAB/Octave, return L(x)−1y.
Here, the function linv denotes the inverse operation to prod. Note, prod defines a
bilinear operation so that there exists a linear operator L(x) such that x ◦ y = L(x)y.
The function linv computes the action of the inverse of L(x) on a vector. For linear
bound constraints, L(x) = Diag(x), where Diag(x) denotes the diagonal matrix with
x on the diagonal. For second-order cone constraints, L(x) = Arw(x) where we define
Arw(x) as

Arw

([
x0
x̄

])
=

[
x0 x̄T

x̄ x0I

]
.

For semidefinite constraints, we can either define that L(X) = X or that L(X) =
X·+·X

2 . Generally, it is preferable to use the first definition since L(X)−1 = X−1. In
the second case, we require the solution of the Sylvester equations.

Name barr

Definition C++ barr(x)

barr← φ(x) where x ◦ ∇φ(x) = e

Python barr(x)

barr← φ(x) where x ◦ ∇φ(x) = e

MATLAB/Octave barr(x)

barr← φ(x) where x ◦ ∇φ(x) = e

Description Return the result of the barrier function applied to a vector. Here, the function
φ : Z → R denotes the barrier function, which we require to satisfy

x ◦ ∇φ(x) = e.

For linear bound constraints, this is simply the log-barrier function

φ(x) =

m∑
i=1

log(xi).

For second-order cone constraints, we define this as

φ

([
x0
x̄

])
=

1

2
log(x20 − 〈x̄, x̄〉).

For semidefinite constraints, we define this as

φ(X) = log(det(X))

where det(X) denotes the determinant of X.
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Name srch

Definition C++ srch(x,y)

srch← arg max{α ∈ R : αx+ y � 0, α ≥ 0}
Python srch(x,y)

srch← arg max{α ∈ R : αx+ y � 0, α ≥ 0}
MATLAB/Octave srch(x,y)

srch← arg max{α ∈ R : αx+ y � 0, α ≥ 0}

Description Return how far we can move in the direction x from the point y before violating
nonnegativity. In other words, the function srch denotes the search function used to
maintain strict feasibility with respect to the inequality constraint. We define this as

arg max{α ∈ R : αx+ y � 0, α ≥ 0}

where we assume y � 0. Hence, α denotes the maximum distance we can move in the
direction x from y so that αx + y remains feasible. Note, sometimes this number is
infinite. If this is the case, we must return Inf.

Name symm

Definition C++ symm(x)

x← π(x) where π(x ◦ y) = π(y ◦ x)

Python symm(x)

x← π(x) where π(x ◦ y) = π(y ◦ x)

MATLAB/Octave symm(x)

symm← π(x) where π(x ◦ y) = π(y ◦ x)

Description In C++ and Python, overwrite x with its symmetrization. In MATLAB/Octave, re-
turn the symmetrization of x. Here, the function π : Z → Z denotes the symmetriza-
tion operator. We require this operator since we relax the commutativity requirement
from the Euclidean-Jordan algebra. For linear bound constraints and second-order
cone constraints, this operation does nothing. In addition, for semidefinite constraints
where X ◦ Y = XY+Y X

2 , this operation does nothing. However, for semidefinite con-
straints where X ◦ Y = XY , we may use symmetrization,

π(X) =
X +XT

2
,

or more generally the similar symmetrization operator,

πP (X) =
(PXP−1 + (PXP−1)T

2
,

where we require P to be nonsingular.

Next, we require these vector-space functions be encapsulated in the following structures:

Language C++

Interface Templated struct with static members and a single typedef called Vector

Description A vector space in C++ must be declared as a templated struct with static members.
As far as the template parameter, we template on our real scalar type and require
that each of the functions that accept or return a scalar use this type. This template
parameter allows us to insure that each of the vector spaces uses the same real type,
which is important for consistency. Next, each of the above functions must be included
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and declared static. This allows us to access the functions without instantiating the
struct. We also require a single typedef called Vector. This defines the vector type used
by each of the vector-space functions. In addition to the typedef, we require that this
vector type implement move semantics, which includes both the move constructor as
well as move semantics for the assignment operator. Note, items in the standard library
all properly implement move semantics. As such, as long as we use std::vector,
std::unique ptr, or std::shared ptr, we satisfy this requirement.

Language Python

Interface Class with static methods

Description A vector space in Python must be declared as a class consisting entirely of static meth-
ods. In other words, we require a class that implements all of the above vector-space
functions where we decorate each function definition with the decorator @staticmethod.

Language MATLAB/Octave

Interface Structure array

Description A vector space in MATLAB/Octave must be declared as a structure array with all of
the above methods present.

As an example, we define and use a custom vector space for Rm in our Rosenbrock advanced API example:

Language C++

Code // Defines the vector space used for optimization.

template <typename Real>

struct MyVS {

typedef std::vector <Real> Vector;

// Memory allocation and size setting

static Vector init(Vector const & x) {

return std::move(Vector(x.size()));

}

// y <- x (Shallow. No memory allocation.)

static void copy(Vector const & x, Vector & y) {

for(Natural i=0;i<x.size();i++){

y[i]=x[i];

}

}

// x <- alpha * x

static void scal(const Real& alpha, Vector & x) {

for(Natural i=0;i<x.size();i++){

x[i]=alpha*x[i];

}

}

// x <- 0

static void zero(Vector & x) {

for(Natural i=0;i<x.size();i++){

x[i]=0.;

}

}

118



// y <- alpha * x + y

static void axpy(const Real& alpha, Vector const & x, Vector & y) {

for(Natural i=0;i<x.size();i++){

y[i]=alpha*x[i]+y[i];

}

}

// innr <- <x,y>

static Real innr(Vector const & x,Vector const & y) {

Real z=0;

for(Natural i=0;i<x.size();i++)

z+=x[i]*y[i];

return z;

}

// x <- random

static void rand(Vector & x){

std::mt19937 gen(1);

std::uniform_real_distribution<Real> dis(Real(0.),Real(1.));

for(Natural i=0;i<x.size();i++)

x[i]=Real(dis(gen));

}

// Jordan product, z <- x o y.

static void prod(Vector const & x, Vector const & y, Vector & z) {

for(Natural i=0;i<x.size();i++)

z[i]=x[i]*y[i];

}

// Identity element, x <- e such that x o e = x.

static void id(Vector & x) {

for(Natural i=0;i<x.size();i++)

x[i]=Real(1.);

}

// Jordan product inverse, z <- inv(L(x)) y where L(x) y = x o y.

static void linv(Vector const & x,Vector const & y,Vector & z) {

for(Natural i=0;i<x.size();i++)

z[i]=y[i]/x[i];

}

// Barrier function, barr <- barr(x) where x o grad barr(x) = e.

static Real barr(Vector const & x) {

Real z=Real(0.);

for(Natural i=0;i<x.size();i++)

z+=log(x[i]);

return z;

}

// Line search, srch <- argmax {alpha \in Real >= 0 : alpha x + y >= 0}

// where y > 0.

static Real srch(Vector const & x,Vector const & y) {

// Line search parameter

Real alpha=std::numeric_limits <Real>::infinity();

// Search for the optimal linesearch parameter.

for(Natural i=0;i<x.size();i++) {
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if(x[i] < Real(0.)) {

Real alpha0 = -y[i]/x[i];

alpha = alpha0 < alpha ? alpha0 : alpha;

}

}

return alpha;

}

// Symmetrization, x <- symm(x) such that L(symm(x)) is a symmetric

// operator.

static void symm(Vector & x) { }

};

Language Python

Code # Defines the vector space used for optimization.

class MyVS(object):

@staticmethod

def init(x):

"""Memory allocation and size setting"""

return copy.deepcopy(x)

@staticmethod

def copy(x,y):

"""y <- x (Shallow. No memory allocation.)"""

y[:]=x[:]

@staticmethod

def scal(alpha,x):

"""x <- alpha * x"""

for i in xrange(0,len(x)):

x[i]=alpha*x[i]

@staticmethod

def zero(x):

"""x <- 0"""

for i in xrange(0,len(x)):

x[i]=0.

@staticmethod

def axpy(alpha,x,y):

"""y <- alpha * x + y"""

for i in xrange(0,len(x)):

y[i]=alpha*x[i]+y[i]

@staticmethod

def innr(x,y):

"""<- <x,y>"""

return reduce(lambda z,xy:xy[0]*xy[1]+z,zip(x,y),0.)

@staticmethod

def rand(x):

"""x <- random"""

for i in xrange(0,len(x)):

x[i]=random.uniform(0.,1.)
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@staticmethod

def prod(x,y,z):

"""Jordan product, z <- x o y"""

for i in xrange(0,len(x)):

z[i]=x[i]*y[i]

@staticmethod

def id(x):

"""Identity element, x <- e such that x o e = x"""

for i in xrange(0,len(x)):

x[i]=1.

@staticmethod

def linv(x,y,z):

"""Jordan product inverse, z <- inv(L(x)) y where L(x) y = x o y"""

for i in xrange(0,len(x)):

z[i]=y[i]/x[i]

@staticmethod

def barr(x):

"""Barrier function, <- barr(x) where x o grad barr(x) = e"""

return reduce(lambda x,y:x+math.log(y),x,0.)

@staticmethod

def srch(x,y):

"""Line search, <- argmax {alpha \in Real >= 0 : alpha x + y >= 0} where y > 0"""

alpha = float("inf")

for i in xrange(0,len(x)):

if x[i] < 0:

alpha0 = -y[i]/x[i]

if alpha0 < alpha:

alpha=alpha0

return alpha

@staticmethod

def symm(x):

"""Symmetrization, x <- symm(x) such that L(symm(x)) is a symmetric operator"""

pass

Language MATLAB/Octave

Code % Convert a vector to structure

function y = tostruct(x)

y = struct(’data’,x);

end

% Defines the vector space used for optimization.

function self = MyVS()

% Memory allocation and size setting

self.init = @(x) x;

% <- x (Shallow. No memory allocation.)

self.copy = @(x) x;
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% <- alpha * x

self.scal = @(alpha,x) tostruct(alpha*x.data);

% <- 0

self.zero = @(x) tostruct(zeros(size(x.data)));

% <- alpha * x + y

self.axpy = @(alpha,x,y) tostruct(alpha * x.data + y.data);

%<- <x,y>

self.innr = @(x,y)x.data’*y.data;

% <- random

self.rand = @(x)tostruct(randn(size(x.data)));

% Jordan product, z <- x o y.

self.prod = @(x,y)tostruct(x.data .* y.data);

% Identity element, x <- e such that x o e = x.

self.id = @(x)tostruct(ones(size(x.data)));

% Jordan product inverse, z <- inv(L(x)) y where L(x) y = x o y.

self.linv = @(x,y)tostruct(y.data ./ x.data);

% Barrier function, barr <- barr(x) where x o grad barr(x) = e.

self.barr = @(x)sum(log(x.data));

% Line search, srch <- argmax {alpha \in Real >= 0 : alpha x + y >= 0}

% where y > 0.

self.srch = @(x,y) feval(@(z)min([min(z(find(z>0)));inf]),-y.data ./x.data);

% Symmetrization, x <- symm(x) such that L(symm(x)) is a symmetric

% operator.

self.symm = @(x)x;

end

6.4 Symmetric cone programming

In the case of C++ and MATLAB/Octave, we provide a built-in vector space for semidefinite, second-order
cone, and linear (SQL) programs:

Language C++

Vector Optizelle::SQL::Vector

Operations Optizelle::SQL

Language MATLAB/Octave

Vector Optizelle.SQL.create (produces a structure array)

Operations Optizelle.SQL

In order to create a C++ SQL::Vector, we use the following constructor
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namespace Optizelle {

template <typename Real>

struct SQL {

struct Vector {

// We require a vector of cone types and their sizes.

Vector (

std::vector <Cone::t> const & types_,

std::vector <Natural> const & sizes_

)

};

};

}

Here, Cone::t corresponds to the enumerated type Cone and Natural refers to the architecture specific
unsigned integer defined in Optizelle::Natural. The constructor creates an SQL variable with the specified
types and sizes of cones. Specifically, a linear cone of size m denotes a vector in Rm that lies in the nonnegative
orthant. A quadratic cone of size m denotes a vector in Rm that lies in the quadratic cone. Finally, a
semidefinite cone of size m denotes a matrix in Rm×m that lies in the cone of positive semidefinite matrices.
Note, even though we ultimately find a symmetric matrix, we compute with a full m×m matrix and not just
the upper or lower half. Using a full matrix affects how we define the derivatives of our inequality constraint
h, so take care. Specifically, h′(x) and h′(x)∗ need to assume that their arguments are not symmetric, so
consider both upper and lower triangular parts of the matrices. In order to create a MATLAB/Octave SQL

vector, we use the function

z = Optizelle.SQL.create(types,sizes);

where types is a vector containing elements from the enumerated type Cone and sizes is a vector denoting
the size of the cones. For example, in order to define a SQL vector with a semidefinite, quadratic, and linear
cone with sizes 2, 2, and 1, we use the syntax

types = ...

[Optizelle.Cone.Semidefinite, ...

Optizelle.Cone.Quadratic, ...

Optizelle.Cone.Linear];

sizes = [2,2,1];

Otherwise, we define the meaning of each of these cones to be the same as the C++ case above. In order to
access the elements of a C++ SQL vector, x, we use the following indexing functions

Number of cones Type of cone Type of Indexing Use
Single Quadratic/Linear Specific element x(i)

Multiple Quadratic/Linear Specific element x(k,i)

Multiple Semidefinite Specific element x(k,i,j)

Multiple Semidefinite/Quadratic/Linear First element x.front(k)

Multiple Quadratic First element x.naught(k)

Multiple Quadratic Second element x.bar(k)

Finally, we have a couple of query functions

Purpose Use
Size of block x.blkSize(k)

Type of block x.blkType(k)

Number of blocks x.numblocks()

In order to access the elements of a MATLAB/Octave SQL vector, x, we note that the cones are stored in the
cell array x.data where each element in the cell array denotes a different cone. We store quadratic and linear
elements as column vectors and semidefinite elements as matrices. For example, to access the ith element of
the kth block when this block is quadratic or linear, we use the syntax x.data{k}(i). To access the (i, j)th
element of the kth block when the block is semidefinite, we use the syntax x.data{k}(i,j). As an example,
we setup and solve a simple second-order cone program in our simple quadratic cone example:
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Language C++

Code // Optimize a simple problem with an optimal solution of (2.5,2.5)

#include <iostream>

#include <iomanip>

#include "optizelle/optizelle.h"

#include "optizelle/vspaces.h"

#include "optizelle/json.h"

// Create some type shortcuts

using Optizelle::Rm;

using Optizelle::SQL;

typedef double Real;

// Squares its input

template <typename Real>

Real sq(Real x){

return x*x;

}

// Define a simple objective where

//

// f(x,y)=(x-3)^2+(y-2)^2

//

struct MyObj : public Optizelle::ScalarValuedFunction <Real,Rm> {

typedef Rm <Real> X;

// Evaluation

double eval(X::Vector const & x) const {

return sq(x[0]-Real(3.))+sq(x[1]-Real(2.));

}

// Gradient

void grad(

X::Vector const & x,

X::Vector & grad

) const {

grad[0]=2*x[0]-6;

grad[1]=2*x[1]-4;

}

// Hessian-vector product

void hessvec(

X::Vector const & x,

X::Vector const & dx,

X::Vector & H_dx

) const {

H_dx[0]= Real(2.)*dx[0];

H_dx[1]= Real(2.)*dx[1];

}

};

// Define a simple SOCP inequality

//

// h(x,y) = [ y >= |x| ]

// h(x,y) = (y,x) >=_Q 0
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//

struct MyIneq : public Optizelle::VectorValuedFunction <Real,Rm,SQL> {

typedef Rm <Real> X;

typedef SQL <Real> Z;

// z=h(x)

void eval(

X::Vector const & x,

Z::Vector & z

) const {

z(1,1)=x[1];

z(1,2)=x[0];

}

// z=h’(x)dx

void p(

X::Vector const & x,

X::Vector const & dx,

Z::Vector & z

) const {

z(1,1) = dx[1];

z(1,2) = dx[0];

}

// xhat=h’(x)*dz

void ps(

X::Vector const & x,

Z::Vector const & dz,

X::Vector & xhat

) const {

xhat[0] = dz(1,2);

xhat[1] = dz(1,1);

}

// xhat=(h’’(x)dx)*dz

void pps(

X::Vector const & x,

X::Vector const & dx,

Y::Vector const & dz,

X::Vector & xhat

) const {

X::zero(xhat);

}

};

int main(int argc,char* argv[]){

// Create some type shortcuts

typedef Rm <Real>::Vector Rm_Vector;

typedef SQL <Real>::Vector SQL_Vector;

// Read in the name for the input file

if(argc!=2) {

std::cerr << "simple_quadratic_cone <parameters>" << std::endl;

exit(EXIT_FAILURE);

}

auto fname = argv[1];
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// Generate an initial guess for the primal

auto x = Rm_Vector({1.2,3.1});

// Allocate memory for the dual

auto z = SQL_Vector ({Optizelle::Cone::Quadratic},{2});

// Create an optimization state

Optizelle::InequalityConstrained <Real,Rm,SQL>::State::t state(x,z);

// Read the parameters from file

Optizelle::json::InequalityConstrained <Real,Rm,SQL>::read(fname,state);

// Create a bundle of functions

Optizelle::InequalityConstrained <Real,Rm,SQL>::Functions::t fns;

fns.f.reset(new MyObj);

fns.h.reset(new MyIneq);

// Solve the optimization problem

Optizelle::InequalityConstrained <Real,Rm,SQL>

::Algorithms::getMin(Optizelle::Messaging::stdout,fns,state);

// Print out the reason for convergence

std::cout << "The algorithm converged due to: " <<

Optizelle::OptimizationStop::to_string(state.opt_stop) << std::endl;

// Print out the final answer

std::cout << std::setprecision(16) << std::scientific

<< "The optimal point is: (" << state.x[0] << ’,’

<< state.x[1] << ’)’ << std::endl;

// Write out the final answer to file

Optizelle::json::InequalityConstrained <Real,Rm,SQL>

::write_restart("solution.json",state);

// Successful termination

return EXIT_SUCCESS;

}

Language MATLAB/Octave

Code % Optimize a simple problem with an optimal solution of (2.5,2.5)

function simple_quadratic_cone(fname)

% Read in the name for the input file

if nargin ~=1

error(’simple_quadratic_cone <parameters>’);

end

% Execute the optimization

main(fname);

end

% Squares its input

function z = sq(x)

z=x*x;

end
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% Define a simple objective where

%

% f(x,y)=(x-3)^2+(y-2)^2

%

function self = MyObj()

% Evaluation

self.eval = @(x) sq(x(1)-3.)+sq(x(2)-2.);

% Gradient

self.grad = @(x) [

2.*x(1)-6;

2.*x(2)-4];

% Hessian-vector product

self.hessvec = @(x,dx) [

2.*dx(1);

2.*dx(2)];

end

% Define a simple SOCP inequality

%

% h(x,y) = [ y >= |x| ]

% h(x,y) = (y,x) >=_Q 0

%

function self = MyIneq()

% y=h(x)

self.eval = @(x)MyIneq_eval(x);

% z=h’(x)dx

self.p = @(x,dx)MyIneq_p(x,dx);

% xhat=h’(x)*dz

self.ps = @(x,dz) [

dz.data{1}(2);

dz.data{1}(1)];

% xhat=(h’’(x)dx)*dz

self.pps = @(x,dx,dz) [

0;

0];

end

% z=h(x)

function z=MyIneq_eval(x)

global Optizelle;

z = Optizelle.SQL.create([Optizelle.Cone.Quadratic],[2]);

z.data{1} = [

x(2);

x(1)];

end

% z=h’(x)dx

function z=MyIneq_p(x,dx)

global Optizelle;

z = Optizelle.SQL.create([Optizelle.Cone.Quadratic],[2]);
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z.data{1} = [

dx(2);

dx(1)];

end

% Actually runs the program

function main(fname)

% Grab the Optizelle library

global Optizelle;

setupOptizelle();

% Generate an initial guess for the primal

x = [1.2; 3.1];

% Generate an initial guess for the dual

z = Optizelle.SQL.create([Optizelle.Cone.Quadratic],[2]);

% Create an optimization state

state=Optizelle.InequalityConstrained.State.t( ...

Optizelle.Rm,Optizelle.SQL,x,z);

% Read the parameters from file

state=Optizelle.json.InequalityConstrained.read( ...

Optizelle.Rm,Optizelle.SQL,fname,state);

% Create a bundle of functions

fns=Optizelle.InequalityConstrained.Functions.t;

fns.f=MyObj();

fns.h=MyIneq();

% Solve the optimization problem

state=Optizelle.InequalityConstrained.Algorithms.getMin( ...

Optizelle.Rm,Optizelle.SQL,Optizelle.Messaging.stdout,fns,state);

% Print out the reason for convergence

fprintf(’The algorithm converged due to: %s\n’, ...

Optizelle.OptimizationStop.to_string(state.opt_stop));

% Print out the final answer

fprintf(’The optimal point is: (%e,%e)\n’,state.x(1),state.x(2));

% Write out the final answer to file

Optizelle.json.InequalityConstrained.write_restart( ...

Optizelle.Rm,Optizelle.SQL,’solution.json’,state);

end

Similarly, we setup and solve a simple semidefinite program in our simple SDP cone example:

Language C++

Code // Optimize a simple problem with an optimal solution of (0.5,.25)

#include <iostream>

#include <iomanip>

#include "optizelle/optizelle.h"

#include "optizelle/vspaces.h"

#include "optizelle/json.h"
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// Create some type shortcuts

using Optizelle::Rm;

using Optizelle::SQL;

typedef double Real;

// Define a simple objective where

//

// f(x,y)=-x+y

//

struct MyObj : public Optizelle::ScalarValuedFunction <Real,Rm> {

typedef Rm <Real> X;

// Evaluation

double eval(X::Vector const & x) const {

return -x[0]+x[1];

}

// Gradient

void grad(

X::Vector const & x,

X::Vector & grad

) const {

grad[0]=Real(-1.);

grad[1]=Real(1.);

}

// Hessian-vector product

void hessvec(

X::Vector const & x,

X::Vector const & dx,

X::Vector & H_dx

) const {

H_dx[0]= Real(0.);

H_dx[1]= Real(0.);

}

};

// Define a simple SDP inequality

//

// h(x,y) = [ y x ] >= 0

// [ x 1 ]

//

struct MyIneq : public Optizelle::VectorValuedFunction <Real,Rm,SQL> {

typedef Rm <Real> X;

typedef SQL <Real> Z;

// z=h(x)

void eval(

X::Vector const & x,

Z::Vector & z

) const {

z(1,1,1)=x[1];

z(1,1,2)=x[0];

z(1,2,1)=x[0];

z(1,2,2)=Real(1.);

}
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// z=h’(x)dx

void p(

X::Vector const & x,

X::Vector const & dx,

Z::Vector & z

) const {

z(1,1,1)=dx[1];

z(1,1,2)=dx[0];

z(1,2,1)=dx[0];

z(1,2,2)=Real(0.);

}

// xhat=h’(x)*dz

void ps(

X::Vector const & x,

Z::Vector const & dz,

X::Vector & xhat

) const {

xhat[0]= dz(1,1,2)+dz(1,2,1);

xhat[1]= dz(1,1,1);

}

// xhat=(h’’(x)dx)*dz

void pps(

X::Vector const & x,

X::Vector const & dx,

Z::Vector const & dz,

X::Vector & xhat

) const {

X::zero(xhat);

}

};

int main(int argc,char* argv[]){

// Create some type shortcuts

typedef Rm <Real>::Vector Rm_Vector;

typedef SQL <Real>::Vector SQL_Vector;

// Read in the name for the input file

if(argc!=2) {

std::cerr << "simple_sdp_cone <parameters>" << std::endl;

exit(EXIT_FAILURE);

}

auto fname = argv[1];

// Generate an initial guess for the primal

auto x = Rm_Vector({1.2,3.1});

// Allocate memory for the dual

auto z = SQL_Vector ({Optizelle::Cone::Semidefinite},{2});

// Create an optimization state

Optizelle::InequalityConstrained <Real,Rm,SQL>::State::t state(x,z);

// Read the parameters from file

Optizelle::json::InequalityConstrained <Real,Rm,SQL>::read(fname,state);
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// Create a bundle of functions

Optizelle::InequalityConstrained <Real,Rm,SQL>::Functions::t fns;

fns.f.reset(new MyObj);

fns.h.reset(new MyIneq);

// Solve the optimization problem

Optizelle::InequalityConstrained <Real,Rm,SQL>

::Algorithms::getMin(Optizelle::Messaging::stdout,fns,state);

// Print out the reason for convergence

std::cout << "The algorithm converged due to: " <<

Optizelle::OptimizationStop::to_string(state.opt_stop) << std::endl;

// Print out the final answer

std::cout << std::setprecision(16) << std::scientific

<< "The optimal point is: (" << state.x[0] << ’,’

<< state.x[1] << ’)’ << std::endl;

// Write out the final answer to file

Optizelle::json::InequalityConstrained <Real,Rm,SQL>

::write_restart("solution.json",state);

// Successful termination

return EXIT_SUCCESS;

}

Language MATLAB/Octave

Code % Optimize a simple problem with an optimal solution of (0.5,.25)

function simple_sdp_cone(fname)

% Read in the name for the input file

if nargin ~=1

error(’simple_sdp_cone <parameters>’);

end

% Execute the optimization

main(fname);

end

% Define a simple objective where

%

% f(x,y)=-x+y

%

function self = MyObj()

% Evaluation

self.eval = @(x) -x(1)+x(2);

% Gradient

self.grad = @(x) [

-1.;

1.];

% Hessian-vector product
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self.hessvec = @(x,dx) [

0;

0];

end

% Define a simple SDP inequality

%

% h(x,y) = [ y x ] >= 0

% [ x 1 ]

%

function self = MyIneq()

% z=h(x)

self.eval = @(x)MyIneq_eval(x);

% z=h’(x)dx

self.p = @(x,dx)MyIneq_p(x,dx);

% xhat=h’(x)*dz

self.ps = @(x,dz) [

dz.data{1}(2,1)+dz.data{1}(1,2);

dz.data{1}(1,1)];

% xhat=(h’’(x)dx)*dz

self.pps = @(x,dx,dz) [

0;

0];

end

% z=h(x)

function z=MyIneq_eval(x)

global Optizelle;

z = Optizelle.SQL.create([Optizelle.Cone.Semidefinite],[2]);

z.data{1} = [

x(2) x(1);

x(1) 1. ];

end

% z=h’(x)dx

function z=MyIneq_p(x,dx)

global Optizelle;

z = Optizelle.SQL.create([Optizelle.Cone.Semidefinite],[2]);

z.data{1} = [

dx(2) dx(1);

dx(1) 0. ];

end

% Actually runs the program

function main(fname)

% Grab the Optizelle library

global Optizelle;

setupOptizelle();

% Generate an initial guess for the primal

x = [1.2; 3.1];
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% Generate an initial guess for the dual

z = Optizelle.SQL.create([Optizelle.Cone.Semidefinite],[2]);

% Create an optimization state

state=Optizelle.InequalityConstrained.State.t( ...

Optizelle.Rm,Optizelle.SQL,x,z);

% Read the parameters from file

state=Optizelle.json.InequalityConstrained.read( ...

Optizelle.Rm,Optizelle.SQL,fname,state);

% Create a bundle of functions

fns=Optizelle.InequalityConstrained.Functions.t;

fns.f=MyObj();

fns.h=MyIneq();

% Solve the optimization problem

state=Optizelle.InequalityConstrained.Algorithms.getMin( ...

Optizelle.Rm,Optizelle.SQL,Optizelle.Messaging.stdout,fns,state);

% Print out the reason for convergence

fprintf(’The algorithm converged due to: %s\n’, ...

Optizelle.OptimizationStop.to_string(state.opt_stop));

% Print out the final answer

fprintf(’The optimal point is: (%e,%e)\n’,state.x(1),state.x(2));

% Write out the final answer to file

Optizelle.json.InequalityConstrained.write_restart( ...

Optizelle.Rm,Optizelle.SQL,’solution.json’,state);

end

6.5 State manipulation

State manipulation is a process that allows us to insert arbitrary code into the optimization algorithms. We
use this to add new features such as the following:

• Real-time optimal control systems require hard computational time limit. After this time, we must exit
the optimization cleanly and return our most current solution.

• For a particular application, we may want to use a custom line-search, but not recode the rest of the
optimization algorithms.

• In signal processing, we may know our optimal solution does not have any frequencies above a certain
threshold. When this is difficult to formulate as a constraint, we can simply run a high-pass filter on
the optimization variable at the end of each iteration.

• When our algorithms perform poorly, we may want to run some custom diagnostics at the end of each
optimization iteration.

• In order to replicate our optimization runs, we need to write a restart file at the end of each optimization
iteration. We describe this process in the section Restarts.

• Internally, we use state manipulation to add algorithms such as the interior point method to the
composite-step SQP method.

In each of these situations, we make use of the StateManipulator. In order to manipulate the state, we use
an object called the StateManipulator. During the optimization computation, we repeatedly call this object
with the bundle of functions, optimization state, and the location. At this point, we may do any computation
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and modify the state as desired. In C++ and Python, we implicitly return these changes to the state. In
MATLAB/Octave, we must return the state explicitly. In code, we specify the StateManipulator as:

Language C++

Structure Optizelle::StateManipulator

Interface Inheritance

Code namespace Optizelle{

// A function that has free reign to manipulate or analyze the state.

template <typename ProblemClass>

struct StateManipulator {

// Disallow constructors

NO_COPY_ASSIGNMENT(StateManipulator)

// Give an empty default constructor

StateManipulator() {}

// Application

virtual void eval(

typename ProblemClass::Functions::t const & fns,

typename ProblemClass::State::t & state,

OptimizationLocation::t const & loc

) const = 0;

// Allow the derived class to deallocate memory

virtual ~StateManipulator() {}

};

}

Language Python

Structure Optizelle.StateManipulator

Interface Inheritance

Code class StateManipulator(object):

"""A function that has free reign to manipulate or analyze the state"""

def eval(self,fns,state,loc):

"""Application"""

pass

Language MATLAB/Octave

Structure Optizelle.StateManipulator

Interface Members present

Code % A function that has free reign to manipulate or analyze the state.

Optizelle.StateManipulator = struct(’eval’,@(fns,state,loc)state);

Once we define the StateManipulator, we call the optimization solver with one of the following four com-
mands, which differs slightly from those defined in the section Call the optimization solver. In essence, we
add the StateManipulator as the last argument to getMin:

Language C++
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Code Optizelle::Unconstrained<Real,XX>::Algorithms::getMin(

msg,fns,state,smanip);

Optizelle::EqualityConstrained<Real,XX,YY>::Algorithms::getMin(

msg,fns,state,smanip);

Optizelle::InequalityConstrained<Real,XX,ZZ>::Algorithms::getMin(

msg,fns,state,smanip);

Optizelle::Constrained<Real,XX,YY,ZZ>::Algorithms::getMin(

msg,fns,state,smanip);

Language Python

Code Optizelle.Unconstrained.Algorithms.getMin(XX,msg,fns,state,smanip)

Optizelle.EqualityConstrained.Algorithms.getMin(XX,YY,msg,fns,state,smanip)

Optizelle.InequalityConstrained.Algorithms.getMin(XX,ZZ,msg,fns,state,smanip)

Optizelle.Constrained.Algorithms.getMin(XX,YY,ZZ,msg,fns,state,smanip)

Language MATLAB/Octave

Code state = Optizelle.Unconstrained.Algorithms.getMin( ...

XX,msg,fns,state,smanip);

state = Optizelle.EqualityConstrained.Algorithms.getMin( ...

XX,YY,msg,fns,state,smanip);

state = Optizelle.InequalityConstrained.Algorithms.getMin( ...

XX,ZZ,msg,fns,state,smanip);

state = Optizelle.Constrained.Algorithms.getMin( ...

XX,YY,ZZ,msg,fns,state,smanip);

As an example, we use the StateManipulator to add restarts to our Rosenbrock advanced API example. We
discuss restarts in the section entitled Restarts.

Language C++

Code // Define a state manipulator that writes out the optimization state at

// each iteration.

struct MyRestartManipulator

: Optizelle::StateManipulator <Optizelle::Unconstrained <double,MyVS> >

{

void eval(

typename Optizelle::Unconstrained <double,MyVS>

::Functions::t const & fns,

typename Optizelle::Unconstrained <double,MyVS>

::State::t & state,

Optizelle::OptimizationLocation::t const & loc

) const {

switch(loc) {

// At the end of the optimization iteration, write the restart file

case Optizelle::OptimizationLocation::EndOfOptimizationIteration: {

// Create a reasonable file name
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std::stringstream ss;

ss << "rosenbrock_advanced_api_";

ss << std::setw(4) << std::setfill(’0’) << state.iter;

ss << ".json";

// Write the restart file

Optizelle::json::Unconstrained <double,MyVS>::write_restart(

ss.str(),state);

break;

} default:

break;

}

}

};

Language Python

Code # Define a state manipulator that writes out the optimization state at

# each iteration.

class MyRestartManipulator(Optizelle.StateManipulator):

def eval(self,fns,state,loc):

# At the end of the optimization iteration, write the restart file

if loc == Optizelle.OptimizationLocation.EndOfOptimizationIteration:

# Create a reasonable file name

ss = "rosenbrock_advanced_api_%04d.json" % (state.iter)

# Write the restart file

Optizelle.json.Unconstrained.write_restart(MyVS,ss,state)

Language MATLAB/Octave

Code % Define a state manipulator that writes out the optimization state at

% each iteration.

function smanip=MyRestartManipulator()

smanip=struct(’eval’,@(fns,state,loc)MyRestartManipulator_(fns,state,loc));

end

function state=MyRestartManipulator_(fns,state,loc)

global Optizelle;

% At the end of the optimization iteration, write the restart file

if(loc == Optizelle.OptimizationLocation.EndOfOptimizationIteration)

% Create a reasonable file name

ss = sprintf(’rosenbrock_advanced_api_%04d.json’,state.iter);

% Write the restart file

Optizelle.json.Unconstrained.write_restart(MyVS(),ss,state);

end

end

In order to use this StateManipulator, we call Optizelle’s solver with the code:

Language C++
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Code // Solve the optimization problem

Optizelle::Unconstrained <double,MyVS>::Algorithms

::getMin(mymessaging,fns,state,MyRestartManipulator());

Language Python

Code # Solve the optimization problem

Optizelle.Unconstrained.Algorithms.getMin(

MyVS,mymessaging,fns,state,MyRestartManipulator())

Language MATLAB/Octave

Code % Solve the optimization problem

state=Optizelle.Unconstrained.Algorithms.getMin( ...

MyVS(),@MyMessaging,fns,state,MyRestartManipulator());

6.6 Restarts

Restarts are a mechanism to read, write, and archive the progress and solution of an optimization algorithm.
In other words, restarts allow us to save the state of an optimization algorithm before it finishes computing.
We do this for several reasons:

• In scientific or engineering tasks, we may need to replicate or reproduce our work.

• Large, computationally expensive problems typically require parallel computing clusters. With thou-
sands of computers working in concert, the chance that a hardware failure occurs increases. One way
to recover from these failures it to restart the computation after a crash.

• Parallel computing clusters generally share their computing resources between several users. In order
to fairly divide use, batch jobs require us to specify the amount of time required to run a job. If we
guess this number poorly, restarts allow us to complete the computation later.

• For many problems, it’s unclear what algorithm we should use. Second-order methods such as Newton’s
method are only guaranteed to converge quadratically near the solution. As such, we may be well served
to start the computation with a first-order method and then switch to a second-order method as we
approach optimality. We can accomplish this by writing a restart file, modifying the specified algorithm,
and then resuming the computation.

• Often an algorithm makes progress toward a solution, but then stagnates. In order to diagnose why the
algorithm stagnated, we may examine the restart file at the iteration of stagnation. Furthermore, if we
have insight into the underlying problem structure, we could modify the solution by hand or with an
outside tool and then restart the computation.

Each of these situations requires restarts. As long as we use our built-in vector spaces such as Rm and SQL,
we can easily read and write the state to a JSON formatted file with the commands:

Language C++
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Code Optizelle::json::Unconstrained <Real,XX>::write_restart(

fname,state);

Optizelle::json::Unconstrained <Real,XX>::read_restart(

fname,x,state);

Optizelle::json::EqualityConstrained <Real,XX,YY>::write_restart(

fname,state);

Optizelle::json::EqualityConstrained <Real,XX,YY>::read_restart(

fname,x,y,state);

Optizelle::json::InequalityConstrained <Real,XX,ZZ>::write_restart(

fname,state);

Optizelle::json::InequalityConstrained <Real,XX,ZZ>::read_restart(

fname,x,z,state);

Optizelle::json::Constrained <Real,XX,YY,ZZ>::write_restart(

fname,state);

Optizelle::json::Constrained <Real,XX,YY,ZZ>::read_restart(

fname,x,y,z,state);

Language Python

Code Optizelle.json.Unconstrained.write_restart(XX,fname,state);

Optizelle.json.Unconstrained.read_restart(XX,fname,x,state);

Optizelle.json.EqualityConstrained.write_restart(XX,YY,fname,state);

Optizelle.json.EqualityConstrained.read_restart(XX,YY,fname,x,y,state);

Optizelle.json.InequalityConstrained.write_restart(XX,ZZ,fname,state);

Optizelle.json.InequalityConstrained.read_restart(XX,ZZ,fname,x,z,state);

Optizelle.json.Constrained.write_restart(XX,YY,ZZ,fname,state);

Optizelle.json.Constrained.read_restart(XX,YY,ZZ,fname,x,y,z,state);

Language MATLAB/Octave

Code Optizelle.json.Unconstrained.write_restart(XX,fname,state);

state = Optizelle.json.Unconstrained.read_restart(XX,fname,x);

Optizelle.json.EqualityConstrained.write_restart(XX,YY,fname,state);

state = Optizelle.json.EqualityConstrained.read_restart(XX,YY,fname,x,y);

Optizelle.json.InequalityConstrained.write_restart(XX,ZZ,fname,state);

state = Optizelle.json.InequalityConstrained.read_restart(XX,ZZ,fname,x,z);

Optizelle.json.Constrained.write_restart(XX,YY,ZZ,fname,state);

state = Optizelle.json.Constrained.read_restart(XX,YY,ZZ,fname,x,y,z);

As was the case before, XX, YY, and ZZ correspond to the vector spaces X, Y , and Z described in the section
Import or define the appropriate vector spaces. Likely, they are just Rm or SQL. Next, we call the function with
a Messaging object, msg. Third, the string fname denotes the file name that we read or write the restart.
Next, the variable state denotes a State object. During a write, we write the provided state to file. During a
read, we read the restart file into the specified state. Finally, the variables x, y, and z denote variables in the
spaces XX, YY, and ZZ, respectively. We only use them to initialize memory, so any valid vector works. As an
example, we return to our Rosenbrock advanced API example. We already showed how to write a restart file
at the end of each optimization iteration in our discussion of StateManipulators. Specifically, we used the
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write restart command in our StateManipulator example. To compliment that code, we read an optional
restart file prior to optimization with the code:

Language C++

Code // If we have a restart file, read in the parameters

if(argc==3)

Optizelle::json::Unconstrained <double,MyVS>::read_restart(

rname,x,state);

// Read additional parameters from file

Optizelle::json::Unconstrained <double,MyVS>::read(pname,state);

Language Python

Code # If we have a restart file, read in the parameters

if len(sys.argv)==3:

Optizelle.json.Unconstrained.read_restart(MyVS,rname,x,state)

# Read additional parameters from file

Optizelle.json.Unconstrained.read(MyVS,pname,state)

Language MATLAB/Octave

Code % If we have a restart file, read in the parameters

if(nargin==2)

state = Optizelle.json.Unconstrained.read_restart(MyVS(),rname,x);

end

% Read additional parameters from file

state=Optizelle.json.Unconstrained.read(MyVS(),pname,state);

As a note, we call the JSON reader after we read the restart file. If we do this in the reverse order, the restart
read process overwrites all of our parameters. For Rm and SQL, the above process works seamlessly. In fact,
C++, Python, and MATLAB/Octave all use the same format for Rm, which means we can write a restart file
in one language and then read the same restart file in a different language. However, for customized vector
spaces, we must provide Optizelle information on how to translate a vector to a JSON formatted file using
the following commands:

Language C++

Code namespace Optizelle {

namespace json {

template <>

struct Serialization <Real,WW> {

static std::string serialize(

typename WW <Real>::Vector const & x,

std::string const & name,

Natural const & iter

) { throw; }

static typename WW <Real>::Vector deserialize(

typename WW <Real>::Vector const & x,

std::string const & x_json

) { throw; }

};

}

}
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Language Python

Code Optizelle.json.Serialization.serialize.register(serialize,vector_type)

Optizelle.json.Serialization.deserialize.register(deserialize,vector_type)

Language MATLAB/Octave

Code Optizelle.json.Serialization.serialize(’register’,serialize,check);

Optizelle.json.Serialization.deserialize(’register’,deserialize,check);

In each command, the serialize and deserialize functions work in a similar manner. The serialize

function accepts a vector, the vector’s name, and the current iteration. Then, serialize returns a valid
JSON structure corresponding to this vector. For Rm, we use simple JSON vector notation such as [1.2,

2.3, 3.4], but this can be significantly more complicated. In fact, for large-scale optimization problems, we
suggest storing the vector in a separate binary file and returning a JSON structure that denotes the name
of the file. In order to make process of defining these file names easier, we provide access to the variable
name and iteration number as the second and third arguments, respectively. Next, the deserialize function
accepts two arguments and returns a vector. The first argument denotes a vector in the same vector space as
the vector we need translated. The second argument denotes a JSON formatted string of the vector we need
to translate. Generally, we use the first argument to initialize memory for the vector we eventually return.
Then, we use the JSON formatted string to fill in the appropriate information. In C++, we accomplish this
process through template specialization. In Python, we call the serialize and deserialize functions in
the Optizelle.json.Serialization module with the "registration" string. Then, we provide our custom
serialize and deserialize routines along with the type of the vector that we want to serialize in the variable
vector type. We obtain this information with the type command and require it in order to disambiguate
multiple serialization routines. In MATLAB/Octave, we call the serialize and deserialize functions in
the Optizelle.json.Serialization structure with the ’registration’ string. Then, similar to Python,
we provide our custom serialize and deserialize routines along with a function check. The function
check accepts a single argument and returns 1 when called with the kind of vector we want to serialize and
0 otherwise. We require the check function to disambiguate the different serialization functions, so we try to
make it as specific as possible. As an example, we return to our Rosenbrock advanced API example. There,
we define custom serialization routines with the code:

Language C++

Code // Define serialization routines for MyVS

namespace Optizelle {

namespace json {

template <>

struct Serialization <double,MyVS> {

static std::string serialize(

typename MyVS <double>::Vector const & x,

std::string const & name,

Natural const & iter

) {

// Create a string with the format

// [ x1, x2, ..., xm ].

std::stringstream x_json;

x_json.setf(std::ios::scientific);

x_json.precision(16);

x_json << "[ ";

for(Natural i=0;i<x.size()-1;i++)

x_json << x[i] << ", ";

x_json << x.back() << " ]";

// Return the string
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return x_json.str();

}

static MyVS <double>::Vector deserialize(

typename MyVS <double>::Vector const & x_,

std::string const & x_json_

) {

// Make a copy of x_json_

auto x_json = x_json_;

// Filter out the commas and brackets from the string

char formatting[] = "[],";

for(Natural i=0;i<3;i++)

x_json.erase(

std::remove(x_json.begin(),x_json.end(),formatting[i]),

x_json.end());

// Create a new vector that we eventually return

auto x = std::vector <double>(x_.size());

// Create a stream out of x_json

std::stringstream ss(x_json);

// Read in each of the elements

for(auto i=0;i<x.size();i++)

ss >> x[i];

// Return the result

return std::move(x);

}

};

}

}

Language Python

Code def serialize_MyVS(x,name,iter):

"""Serializes an array for the vector space MyVS"""

# Create the json representation

x_json="[ "

for i in xrange(0,len(x)):

x_json += str(x[i]) + ", "

x_json=x_json[0:-2]

x_json +=" ]"

return x_json

def deserialize_MyVS(x,x_json):

"""Deserializes an array for the vector space MyVS"""

# Eliminate all whitespace

x_json="".join(x_json.split())

# Check if we’re a vector

if x_json[0:1]!="[" or x_json[-1:]!="]":

raise TypeError("Attempted to deserialize a non-array vector.")
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# Eliminate the initial and final delimiters

x_json=x_json[1:-1]

# Create a list of the numbers involved

x_json=x_json.split(",")

# Convert the strings to numbers

x_json=map(lambda x:float(x),x_json)

# Create a MyVS vector

return array.array(’d’,x_json)

# Register the serialization routines for arrays

def MySerialization():

Optizelle.json.Serialization.serialize.register(

serialize_MyVS,array.array)

Optizelle.json.Serialization.deserialize.register(

deserialize_MyVS,array.array)

Language MATLAB/Octave

Code % Define serialization routines for MyVS

function MySerialization()

global Optizelle;

Optizelle.json.Serialization.serialize( ...

’register’, ...

@(x,name,iter)strrep(mat2str(x.data’),’ ’,’, ’), ...

@(x)isstruct(x) && isfield(x,’data’) && isvector(x.data));

Optizelle.json.Serialization.deserialize( ...

’register’, ...

@(x,x_json)tostruct(str2num(x_json)’), ...

@(x)isstruct(x) && isfield(x,’data’) && isvector(x.data));

end

As another example, we refer to our Simple constrained advanced API example. This differs from the
previous example since we write our vectors to a separate file. In order to accomplish this, we define custom
serialization routines with the code:

Language C++

Code // Define serialization routines for MyVS

namespace Optizelle {

namespace json {

template <>

struct Serialization <double,MyVS> {

static std::string serialize(

typename MyVS <double>::Vector const & x,

std::string const & name,

Natural const & iter

) {

// Create the filename where we put our vector

std::stringstream fname;

fname << "./restart/";

fname << name << ".";

fname << std::setw(4) << std::setfill(’0’) << iter;
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fname << ".txt";

// Actually write the vector there

std::ofstream fout(fname.str());

if(fout.fail()) {

std::stringstream msg;

msg << "While writing the variable " << name

<< " to file on iteration " << iter

<< ", unable to open the file: "

<< fname.str() << ".";

throw Optizelle::Exception::t(msg.str());

}

fout.setf(std::ios::scientific);

fout.precision(16);

for(Natural i=0;i<x.size();i++)

fout << x[i] << std::endl;

// Close out the file

fout.close();

// Use this filename as the json string

std::stringstream x_json;

x_json << "\"" << fname.str() << "\"";

return x_json.str();

}

static MyVS <double>::Vector deserialize(

typename MyVS <double>::Vector const & x_,

std::string const & x_json_

) {

// Make a copy of x_json_

auto x_json = x_json_;

// Filter out the quotes and newlines from the string

auto formatting = "\"\n";

for(auto i=0;i<2;i++)

x_json.erase(

std::remove(x_json.begin(),x_json.end(),formatting[i]),

x_json.end());

// Open the file for reading

std::ifstream fin(x_json.c_str());

if(!fin.is_open())

throw Optizelle::Exception::t(

"Error while opening the file " + x_json + ": " +

strerror(errno));

// Create a new vector that we eventually return

auto x = std::vector <double> (x_.size());

// Read in each of the elements

for(auto i=0;i<x.size();i++)

fin >> x[i];

// Return the result

return std::move(x);

}

};
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}

}

Language Python

Code def serialize_MyVS(x,name,iter):

"""Serializes an array for the vector space MyVS"""

# Create the filename where we put our vector

fname = "./restart/%s.%04d.txt" % (name,iter)

# Actually write the vector there

fout = open(fname,"w");

for i in xrange(0,len(x)):

fout.write("%1.16e\n" % x[i])

# Close out the file

fout.close()

# Use this filename as the json string

x_json = "\"%s\"" % fname

return x_json

def deserialize_MyVS(x_,x_json):

"""Deserializes an array for the vector space MyVS"""

# Eliminate all whitespace

x_json="".join(x_json.split())

# Eliminate the initial and final delimiters

x_json=x_json[1:-1]

# Open the file for reading

fin = open(x_json,"r")

# Allocate a new vector to return

x = copy.deepcopy(x_)

# Read in each of the elements

for i in xrange(0,len(x)):

x[i] = float(fin.readline())

# Close out the file

fin.close()

# Return the result

return x

# Register the serialization routines for arrays

def MySerialization():

Optizelle.json.Serialization.serialize.register(

serialize_MyVS,array.array)

Optizelle.json.Serialization.deserialize.register(

deserialize_MyVS,array.array)
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Language MATLAB/Octave

Code % Define the serialize routine for MyVS

function x_json=serialize_MyVS(x,name,iter)

% Create the filename where we put our vector

fname=sprintf(’./restart/%s.%04d.txt’,name,iter);

% Actually write the vector there

dlmwrite(fname,x.data);

% Use this filename as the json string

x_json = sprintf(’\"%s\"’,fname);

end

% Define the deserialize routine for MyVS

function x=deserialize_MyVS(x_,x_json)

% Filter out the quotes and newlines from the string

x_json = strrep(x_json,’"’,’’);

x_json = strrep(x_json,sprintf(’\n’),’’);

% Read the data into x

x=tostruct(dlmread(x_json));

end

% Define serialization routines for MyVS

function MySerialization()

global Optizelle;

Optizelle.json.Serialization.serialize( ...

’register’, ...

@(x,name,iter)serialize_MyVS(x,name,iter), ...

@(x)isstruct(x) && isfield(x,’data’) && isvector(x.data));

Optizelle.json.Serialization.deserialize( ...

’register’, ...

@(x,x_json)deserialize_MyVS(x,x_json), ...

@(x)isstruct(x) && isfield(x,’data’) && isvector(x.data));

end

In some situations, we want to avoid using JSON all together. Generally, this occurs when integrating
Optizelle into an existing application with rigid I/O requirements. In this case, we provide an alternative
mechanism to generate restarts.

At its core, restarts consist of two mechanisms: release and capture. Release transforms the state into a
collection of lists that contain all of the optimization information. Capture reverses this process. Generally,
we do a release, write these lists containing the state information to file, and then capture the state. The idea
behind this process is that we don’t expect ourselves to remember all of the optimization variables. Certainly,
this collection of variables changes whenever we update the code or add new algorithms. However, if we know
how to write a list of variables to file, we can simply iterate over the list and take the appropriate action.
More specifically, the capture and release functions operate on lists of tuples. As far as the type used for the
lists, we have:

Language C++

Type std::list

Language Python

Type list
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Language MATLAB/Octave

Type cell

For the type used by the tuples, we have

Language C++

Type std::pair

Language Python

Type tuple

Language MATLAB/Octave

Type cell

In these tuples, we always use a string for the first element. This represents the unique label for the item.
The second items depends on the type involved and we enumerate these possibilities below:

Type Reals

Description List of Real numbers and labels.

Type Naturals

Description List of Natural numbers and labels.

Type Params

Description List of strings and labels. These strings correspond to the various Enumerated types
that have been converted to strings using the to string function, which we also de-
scribe in the Enumerated type documentation.

Type X Vectors

Description List of X Vector vectors and labels.

Type Y Vectors

Description List of Y Vector vectors and labels.

Type Z Vectors

Description List of Z Vector vectors and labels.

Based on the above types, we release and capture the state with the following code:

Language C++
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Code Optizelle::Unconstrained <Real,XX>::Restart::X_Vectors xs;

Optizelle::Unconstrained <Real,XX>::Restart::Reals reals;

Optizelle::Unconstrained <Real,XX>::Restart::Naturals nats;

Optizelle::Unconstrained <Real,XX>::Restart::Params params;

Optizelle::Unconstrained <Real,XX>::Restart

::release(state,xs,reals,nats,params);

Optizelle::Unconstrained <Real,XX>::Restart

::capture(state,xs,reals,nats,params);
Optizelle::EqualityConstrained <Real,XX,YY>::Restart::X_Vectors xs;

Optizelle::EqualityConstrained <Real,XX,YY>::Restart::Y_Vectors ys;

Optizelle::EqualityConstrained <Real,XX,YY>::Restart::Reals reals;

Optizelle::EqualityConstrained <Real,XX,YY>::Restart::Naturals nats;

Optizelle::EqualityConstrained <Real,XX,YY>::Restart::Params params;

Optizelle::EqualityConstrained <Real,XX,YY>::Restart

::release(state,xs,ys,reals,nats,params);

Optizelle::EqualityConstrained <Real,XX,YY>::Restart

::capture(state,xs,ys,reals,nats,params);

Optizelle::InequalityConstrained <Real,XX,ZZ>::Restart::X_Vectors xs;

Optizelle::InequalityConstrained <Real,XX,ZZ>::Restart::Z_Vectors zs;

Optizelle::InequalityConstrained <Real,XX,ZZ>::Restart::Reals reals;

Optizelle::InequalityConstrained <Real,XX,ZZ>::Restart::Naturals nats;

Optizelle::InequalityConstrained <Real,XX,ZZ>::Restart::Params params;

Optizelle::InequalityConstrained <Real,XX,ZZ>::Restart

::release(state,xs,zs,reals,nats,params);

Optizelle::InequalityConstrained <Real,XX,ZZ>::Restart

::capture(state,xs,zs,reals,nats,params);

Optizelle::Constrained <Real,XX,YY,ZZ>::Restart::X_Vectors xs;

Optizelle::Constrained <Real,XX,YY,ZZ>::Restart::Y_Vectors ys;

Optizelle::Constrained <Real,XX,YY,ZZ>::Restart::Z_Vectors zs;

Optizelle::Constrained <Real,XX,YY,ZZ>::Restart::Reals reals;

Optizelle::Constrained <Real,XX,YY,ZZ>::Restart::Naturals nats;

Optizelle::Constrained <Real,XX,YY,ZZ>::Restart::Params params;

Optizelle::Constrained <Real,XX,YY,ZZ>::Restart

::release(state,xs,ys,zs,reals,nats,params);

Optizelle::Constrained <Real,XX,YY,ZZ>::Restart

::capture(state,xs,ys,zs,reals,nats,params);

Language Python

Code xs = Optizelle.Unconstrained.Restart.X_Vectors()

reals = Optizelle.Unconstrained.Restart.Reals()

nats = Optizelle.Unconstrained.Restart.Naturals()

params = Optizelle.Unconstrained.Restart.Params()

Optizelle.Unconstrained.Restart.release(XX,state,xs,reals,nats,params)

Optizelle.Unconstrained.Restart.capture(XX,state,xs,reals,nats,params)
xs = Optizelle.EqualityConstrained.Restart.X_Vectors()

ys = Optizelle.EqualityConstrained.Restart.Y_Vectors()

reals = Optizelle.EqualityConstrained.Restart.Reals()

nats = Optizelle.EqualityConstrained.Restart.Naturals()

params = Optizelle.EqualityConstrained.Restart.Params()

Optizelle.EqualityConstrained.Restart.release(

XX,YY,state,xs,ys,reals,nats,params)

Optizelle.EqualityConstrained.Restart.capture(

XX,YY,state,xs,ys,reals,nats,params)
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xs = Optizelle.InequalityConstrained.Restart.X_Vectors()

zs = Optizelle.InequalityConstrained.Restart.Z_Vectors()

reals = Optizelle.InequalityConstrained.Restart.Reals()

nats = Optizelle.InequalityConstrained.Restart.Naturals()

params = Optizelle.InequalityConstrained.Restart.Params()

Optizelle.InequalityConstrained.Restart.release(

XX,ZZ,state,xs,zs,reals,nats,params)

Optizelle.InequalityConstrained.Restart.capture(

XX,ZZ,state,xs,zs,reals,nats,params)

xs = Optizelle.Constrained.Restart.X_Vectors()

ys = Optizelle.Constrained.Restart.Y_Vectors()

zs = Optizelle.Constrained.Restart.Z_Vectors()

reals = Optizelle.Constrained.Restart.Reals()

nats = Optizelle.Constrained.Restart.Naturals()

params = Optizelle.Constrained.Restart.Params()

Optizelle.Constrained.Restart.release(

XX,YY,ZZ,state,xs,ys,zs,reals,nats,params)

Optizelle.Constrained.Restart.capture(

XX,YY,ZZ,state,xs,ys,zs,reals,nats,params)

Language MATLAB/Octave

Code xs = Optizelle.Unconstrained.Restart.X_Vectors;

reals = Optizelle.Unconstrained.Restart.Reals;

nats = Optizelle.Unconstrained.Restart.Naturals;

params = Optizelle.Unconstrained.Restart.Params;

[xs reals nats params] = Optizelle.Unconstrained.Restart.release( ...

XX,state);

state = Optizelle.Unconstrained.Restart.capture( ...

XX,state,xs,reals,nats,params);
xs = Optizelle.EqualityConstrained.Restart.X_Vectors;

ys = Optizelle.EqualityConstrained.Restart.Y_Vectors;

reals = Optizelle.EqualityConstrained.Restart.Reals;

nats = Optizelle.EqualityConstrained.Restart.Naturals;

params = Optizelle.EqualityConstrained.Restart.Params;

[xs ys reals nats params] = Optizelle.EqualityConstrained.Restart.release( ...

XX,YY,state);

state = Optizelle.EqualityConstrained.Restart.capture( ...

XX,YY,state,xs,ys,reals,nats,params);

xs = Optizelle.InequalityConstrained.Restart.X_Vectors;

zs = Optizelle.InequalityConstrained.Restart.Z_Vectors;

reals = Optizelle.InequalityConstrained.Restart.Reals;

nats = Optizelle.InequalityConstrained.Restart.Naturals;

params = Optizelle.InequalityConstrained.Restart.Params;

[xs zs reals nats params] = Optizelle.InequalityConstrained.Restart.release( ...

XX,ZZ,state);

state = Optizelle.InequalityConstrained.Restart.capture( ...

XX,ZZ,state,xs,zs,reals,nats,params);
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xs = Optizelle.Constrained.Restart.X_Vectors;

ys = Optizelle.Constrained.Restart.Y_Vectors;

zs = Optizelle.Constrained.Restart.Z_Vectors;

reals = Optizelle.Constrained.Restart.Reals;

nats = Optizelle.Constrained.Restart.Naturals;

params = Optizelle.Constrained.Restart.Params;

[xs ys zs reals nats params] = Optizelle.Constrained.Restart.release( ...

XX,YY,ZZ,state);

state = Optizelle.Constrained.Restart.capture( ...

XX,YY,ZZ,state,xs,ys,zs,reals,nats,params);

As with read restart and write restart, we most likely use this functions within a StateManipulator.
However, when possible, we are likely better off just using the JSON formatted restart mechanisms within
read restart and write restart.

6.7 Caching Computations

Internally, Optizelle caches many operations in order to reduce unnecessary computation. This includes
computations such as the objective or gradient evaluations. Nevertheless, there are operations that should
be cached that Optizelle does not control due to its matrix-free nature. These operations must be cached by
the user’s code. In the following section, we detail what these operations are and how they should be cached.
The following table summarizes the different pieces of the code that can be cached, the number of items that
should be stored, and the priority of caching this particular element.

Computation Objective evaluation during the first gradient solve

Problem Class Unconstrained, Equality Constrained, Inequality Constrained, Constrained

Priority Low

Number Stored 1

Description During initialization, Optizelle evaluates the gradient before the objective function.
Depending on the problem, it may be possible to evaluate and cache the objective
function at the same time as this computation. Specifically, when the objective func-
tion has the form J(x) = f(g(x)), we calculate the gradient as

∇J(x) = g′(x)∗∇f(g(x)).

When the evaluation of g(x) is expensive, such as solving a PDE or computing an
inverse, we can use this calculation for both the gradient and the objective function
by simultaneously computing both f(g(x)) and ∇f(g(x)).

Despite this utility, we do not typically prioritize this optimization. We only benefit
from saving this computation on the first iteration since Optizelle automatically caches
the appropriate objective evaluations from the globalization, be that from line-search or
trust-region algorithms, for the rest of the algorithm. Therefore, subsequent gradient
evaluations don’t need to cache information about the objective since it’s already been
cached. Nevertheless, when we repeatedly run the first iteration of an optimization
problem in order to check the problem setup, this caching can save in the overall
computation.

Computation Nested computations and state solves

Problem Class Unconstrained, Equality Constrained, Inequality Constrained, Constrained

Priority High

Number Stored 1
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Description During the discussion of caching the objective, we spoke of objective functions of the
form J(x) = f(g(x)). As we noted before, we have that

∇J(x) = g′(x)∗∇f(g(x)),

but we also note that

∇2J(x)∂x = (g′′(x)∂x)∗∇f(g(x)) + g′(x)∗∇2f(g(x))g′(x)∂x.

Here, we see that we repeatedly use the quantity g(x). When the evaluation of g(x) is
expensive, such as solving a PDE or computing an inverse, then caching this element
allows us to save significantly on the computational cost. When the evaluation of g(x)
corresponds to a PDE solve, we refer to its evaluation as a state solve.

Computation Hessian

Problem Class Unconstrained, Equality Constrained, Inequality Constrained, Constrained

Priority Low

Number Stored 1

Description Although Optizelle implements matrix-free algorithms, we can still use a precomputed
Hessian when one is available. Since calculating a Hessian can be expensive, we should
only calculate it once per iteration and use it both in computing in the Hessian-vector
product as well as the Hessian preconditioner.

Overall, we do not prioritize computing the Hessian explicitly as it tends to require a
lot of memory. In addition, we rely on Newton’s method in order to obtain quadratic
convergence, but this fast convergence only occurs when close to the optimal solution.
When far away from the optimal solution, we waste computational effort when fully
computing second-order information. Generally, truncated-CG does a good job at
determining how many Hessian-vector products are required and this does not require
a fully computed Hessian.

Computation Factorization, inverse, or approximate inverse of the Hessian

Problem Class Unconstrained, Inequality Constrained

Priority Low

Number Stored 1

Description For problems without equality constraints, Optizelle allows the user to define a precon-
ditioner for the Hessian. Recall, the null space projection inherent to the composite-
step SQP method precludes a Hessian preconditioner from being used on problems
with equality constraints. For more details see the section (Optional) Define the pre-
conditioners. In any case, barring some kind of problem specific preconditioner, we
can always compute and then factorize the Hessian to be used as a preconditioner. If
we do this, we should also cache the Hessian computation itself.

Overall, we do not prioritize caching this information. Similar to the discussion of
caching the Hessian, far from the optimal solution, Newton’s method does not guaran-
tee quadratic convergence. Therefore, we waste computational effort when computing
the Hessian and factorizing it every iteration in order to force a pure Newton step.

Computation Total derivative (Jacobian) of the equality constraints

Problem Class Equality Constrained, Constrained
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Priority High

Number Stored 2

Description Although Optizelle only requires the action of the derivative of the equality constraints
on a vector, g′(x)∂x, we benefit greatly from computing the total derivative g′(x) and
caching the result. First, depending on the inner product, when g′(x) or g′(x)∗ is
explicitly available, we can quickly compute its adjoint. For example, when using the
inner product 〈x, y〉 = xT y, we simply have to transpose the matrix. Second, each
augmented system solve requires the repeated application of g′(x)∂x and g′(x)∗∂y.
Combined with the first point, we can compute these operations by simply multiplying
the cached result by a vector. Third, when solving a problem with more than tens
of variables, we require a preconditioner for the augmented system, which can be
accomplished by finding a preconditioner for the operator g′(x)g′(x)∗. When these
derivatives are explicitly available, we can easily form and factorize this matrix. As
we discuss below, we should also cache this factorization.

Note, unlike most of the other caching, we require two cached elements for an efficient
code. During globalization, we compute a new equality multiplier, which requires an
augmented system solve at the trial point. If we accept the point, we can reuse the
new cached derivative. However, if we reject the point, we will continue to require the
current cached derivative. As a final note, it’s often easier to cache and store g′(x)∗ as
opposed to g′(x). For example, given the inner product 〈x, y〉 = xT y and a function
of the form

g(x) =

 g1(x)
...

gm(x)

 ,
we can compute g′(x)∗ as

g′(x)∗ =
[
∇g1(x) . . . ∇gm(x)

]
.

Especially with tools like automatic differentiation, this form becomes somewhat more
natural to compute since we don’t have to compute an extra transpose, which we
undo later. Further, if we decide to compute the Schur preconditioner using a QR
factorization, we actually factorize g′(x)∗ and not g′(x). Though, as we stated above,
we can quickly compute one form from the other, so we always use what’s easiest
to compute and calculate. For more information on preconditioning, see the section
(Optional) Define the preconditioners.

Computation Factorization, inverse, or approximate inverse for the Schur preconditioner

Problem Class Equality Constrained, Constrained

Priority High

Number Stored 2

Description As we discuss in the section (Optional) Define the preconditioners, we require a Schur
preconditioner for equality constrained problems that contain more than tens of vari-
ables. To accomplish this, we generally factorize g′(x)g′(x)∗, but we can use a problem
specific preconditioner as well. In either case, it’s important that we cache this com-
putation since we repeatedly require it and it’s likely expensive to compute. Similar
to our discussion of caching the total derivative of the equality constraints, we require
two cached factorizations for an efficient code.

Computation Adjoint of the second derivative of the equality constraints applied to a vector
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Problem Class Equality Constrained, Constrained

Priority Low

Number Stored 1

Description During the tangential subproblem, which solves the optimality conditions, we require
the repeated computation of (g′′(x)∂x)∗y. Sometimes, we can precompute part of this
computation, which can accelerate this application. For example, when we use the
inner product 〈x, y〉 = xT y and have a function of the form

g(x) =

 g1(x)
...

gm(x)

 ,
we have that

(g′′(x)∂x)∗y =

(
m∑
i=1

yi∇2gi(x)

)
∂x.

In this case, we can cache the quantity

m∑
i=1

yi∇2gi(x)

to accelerate the computation.

Most of the time, we do not prioritize caching this operator. This operator has the
same size as the Hessian, which tends to require a lot of memory. Further, when far
from the optimal solution, we may only require the action of this operator on a vector
a few times each iteration. Therefore, computing the entire operator can be wasteful.

In order to illustrate these caching techniques, let us setup and solve a simple parameter estimation problem.
In parameter estimation, we seek an unknown parameter, k, that characterizes a model, which is often a PDE
describing some kind of physical system. In order to find these parameters, we run a series of experiments
on the physical system and collect the measurable data, d. Then, we match this data to the output of
the model, u. For example, we can model a parameter estimation problem governed by the steady-state
convection-diffusion equations in 1-D as

min
k∈R2,u∈C2([0,1])

1
2‖u− d‖

2

st k1∇ · (∇u) + k2∇ · u = f
u(0) = a
u(1) = b.

To be sure, we give the simplest possible case here. Really, there should be a time component and k should
represent material properties that vary spatially like u. Nevertheless, this problem will demonstrate that even
a problem with only two variables can be very expensive to solve and that intermediate quantities should be
cached appropriately. To that end, our strategy for this example will be to

1. Discretize the differential equation using a finite-difference method

2. Implement caching on the reduced-space (unconstrained) formulation

3. Implement caching on the full-space (equality constrained) formulation

This includes code written in MATLAB/Octave demonstrating the caching called computation caching in
the examples directory. We explain the terms reduced-space and full-space below.
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Discretization
In order to discretize the diffusion operator, ∇·∇, we use the second-order accurate finite-difference operator

A =
1

∂x2


−2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2

 .

In order to accommodate the Dirichlet boundary conditions, we also define a vector that we use to modify
the right hand side with information about the boundary conditions,

Â =
1

∂x2


−a
0
...
0
−b

 .

Normally, we just subtract this quantity from the discretized f , but since we have unknown material properties
k, we represent it explicitly. Next, we discretize the convection operator, ∇·, using the first-order accurate
finite difference operator

B =
1

∂x


1
−1 1

. . .
. . .

−1 1


As before, we accommodate the Dirichlet boundary condition with a vector to modify the right hand side
with information about the boundary conditions,

B̂ =
1

∂x


−a
0
...
0

 .
This allows us to specify the discretized parameter estimation problem as

min
k∈R2,u∈Rm

1
2‖u− d‖

2

st (k1A+ k2B)u = f − k1Â− k2B̂.

For brevity, we specify that

C(k) =k1A+ k2B

g(k) =f − k1Â− k2B̂,

which allows us to reformulate the discretized parameter estimation problem as

min
k∈R2,u∈Rm

1
2‖u− d‖

2

st C(k)u = g(k).

We call the above formulation the full-space formulation. Alternatively, we can solve for u in the constraints
and instead solve

min
k∈R2

1
2‖C(k)−1g(k)− d‖2

which we call the reduced-space formulation.
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Caching the reduced-space (unconstrained) formulation
In the reduced-space formulation, let us set

J(k) =
1

2
‖C(k)−1g(k)− d‖2.

In order to optimize with this function, we require the gradient and the Hessian-vector product. In order to
derive the gradient, we calculate the partial derivative with respect to ki as

J ′i(k) =〈C(k)−1g(k)− d,−C(k)−1C ′i(k)C(k)−1g(k) + C(k)−1g′i(k)〉
=〈C(k)−1g(k)− d,−C(k)−1(C ′i(k)C(k)−1g(k)− g′i(k))〉

where
C ′1(k) =A, C ′2(k) =B,

g′1(k) =−Â, g′2(k) =−B̂.

Then,

∇J(k) =

[
J ′1(k)
J ′2(k)

]
.

In order to calculate the Hessian-vector product, we continue this process and compute the full Hessian. We
see that the second partial derivative of J with respect to ki and kj is

J ′′ij(k) =〈−C(k)−1(C ′j(k)C(k)−1g(k)− g′j(k)),−C(k)−1(C ′i(k)C(k)−1g(k)− g′i(k))〉
+ 〈C(k)−1g(k)− d,C(k)−1C ′j(k)C(k)−1(C ′i(k)C(k)−1g(k)− g′i(k))〉
+ 〈C(k)−1g(k)− d,C(k)−1(C ′i(k)C(k)−1C ′j(k)C(k)−1g(k))〉
+ 〈C(k)−1g(k)− d,−C(k)−1(C ′i(k)C(k)−1g′j(k)〉.

Certainly, we could group terms more optimally, but this formulation is good enough for our purposes. Then,
we have that

∇2J(k) =

[
J ′′11(k) J ′′12(k)
J ′′21(k) J ′′22(k)

]
.

At this point, we can implement the necessary optimization functions and cache effectively. We begin with
caching the initial objective function solve in the code

% Evaluates the objective

function z = obj_eval(params,x)

% Cached objective evaluation. Really, this only saves us the first

% objective evaluation as the subsequent evaluations are cached by

% Optizelle

global ocache

% Performance diagnostis

global diagnostics

% Grab the cached objective evaluation when possible

if ~isempty(ocache) && isequal(x,ocache.x)

z = ocache.eval;

diagnostics.used_cached_objective = diagnostics.used_cached_objective+1;

else

% We don’t use the caching state solve here because the objective

% may be evaluated at multiple points during a single optimization

% iteration, primarily for globalization. This differs from the

% gradient and Hessian-vector product, which are both evalated at a

% fixed point each iteration.

u = state_uncached(params,x,rhs(params,x));

% Evaluate the objective

z = 0.5 * norm(u-params.d)^2;
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end

end

% Evaluates the gradient

function grad = obj_grad(params,x)

% Cached objective evaluation

global ocache

% Solve for the current solution

u = state(params,x,rhs(params,x));

% Cached the state solution globally for the objective

if isempty(ocache) || ~isequal(x,ocache.x)

ocache.x = x;

ocache.eval = 0.5 * norm(u-params.d)^2;

end

% Set each element of the gradient

grad = zeros(2,1);

for i=1:2

grad(i) = innr( ...

u-params.d, ...

-state(params,x,op_p(i,params,x)*u - rhs_p(i,params,x)));

end

end

In the function obj grad, we compute the objective during the gradient solve and store it in the global variable
ocache. Then, the function obj eval uses this cached value when possible. Note, it’s possible to accomplish
the same effect without global variables by using an intermediate function with persistent variables, but this
method works well enough. Next, we cache the state solves with the code

% Solves the discretized PDE with caching

function z = state(params,x,rhs)

% Keep track of where the solve occurs

persistent cache

% Performance diagnostics

global diagnostics

% Cache the factorization when required

if isempty(cache) || ~isequal(x,cache.x)

% Save the point we’re factorizing at

cache.x = x;

% Factorize the operator

[cache.l cache.u cache.p cache.q cache.r] = ...

lu(op(params,x),’vector’);

% Keep track that we did a new factorization

diagnostics.state_factorization_cached = ...

diagnostics.state_factorization_cached+1;

end

% Solve the linear system

z = zeros(size(rhs));

z(cache.q) = cache.u\(cache.l\(cache.r(:,cache.p)\rhs));

end
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We greatly improve the code’s performance with this routine because it insures that we only factorize the
linear system associated with the discretized convection-diffusion equations once per iteration. It accomplishes
this by storing the cached results in the persistent variable cache. As far as the second-order information, we
see how to compute and cache the Hessian-vector product with the code

% Evaluates the Hessian-vector product

function hv = obj_hv(params,x,dx)

hv = hessian(params,x)*dx;

end

% Finds the Hessian

function H = hessian(params,x)

% Keep track of where the construction occurs

persistent cache

% Performance diagnostics

global diagnostics

% Cache the Hessian when required

if isempty(cache) || ~isequal(x,cache.x)

% Save the point we’re evaluating the Hessian at

cache.x = x;

% Solve for the current solution

u = state(params,x,rhs(params,x));

% Calculate the Hessian

cache.H = zeros(2);

innr = @(x,y)x’*y;

for j=1:2

for i=1:j

cache.H(i,j) = ...

innr( ...

-state(params,x, ...

op_p(j,params,x)*u - rhs_p(j,params,x)), ...

-state(params,x, ...

op_p(i,params,x)*u - rhs_p(i,params,x))) + ...

innr(u-params.d, ...

state(params,x, ...

op_p(j,params,x) * state(params,x, ...

op_p(i,params,x)*u-rhs_p(i,params,x))))+ ...

innr(u-params.d, ...

state(params,x, ...

op_p(i,params,x) * state(params,x, ...

op_p(j,params,x) * u))) + ...

innr(u-params.d, ...

-state(params,x, ...

op_p(i,params,x) * ...

state(params,x,rhs_p(j,params,x))));

end

end

cache.H(2,1)=cache.H(1,2);

% Keep track that we cache a Hessian

diagnostics.hessian_cached = diagnostics.hessian_cached+1;

end
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% Evaluate the Hessian-vector product

H = cache.H;

end

Notice that we compute and cache the dense Hessian in the routine hessian, which makes the Hessian-vector
product a simple multiplication. As before, we accomplish this caching with the persistent variable cache.
Also note, this code relies on the cached state solves we describe above for fast performance. Finally, we
implement and cache a Hessian preconditioner using the inverse of the Hessian computed with the code

% Evaluates the inverse of the Hessian applied to a vector

function ihv = obj_hv_inv(params,x,dx)

% Keep track of where the factorization occurs

persistent cache

% Performance diagnostics

global diagnostics

% Cache the Hessian factorization when required

if isempty(cache) || ~isequal(x,cache.x)

% Save the point we’re factorizing the Hessian factorization at

cache.x = x;

% Grab the current Hessian

H = hessian(params,x);

% Factorize the Hessian

[cache.l cache.u cache.p]=lu(H,’vector’);

% Keep track that we cache a Hessian factorization

diagnostics.hessian_factorization_cached = ...

diagnostics.hessian_factorization_cached+1;

end

% Apply the inverse to the direction

ihv = cache.u\(cache.l\dx(cache.p));

end

Similar to the other functions, we cache the intermediate results in the persistent variable cache. Also note
that we rely on the cached Hessian in the code listed above.

Caching the full-space (equality constrained) formulation
If the full-space formulation, we focus on the constraint

G(k, u) = C(k)u− g(k)

In order to derive the total derivative, we note that

G′ki
(k, u) =C ′iu− g′i(k)

G′u(k, u) =C(k).

This implies that the total derivative and its adjoint are

G′(k, u) =
[
C ′1u− g′1(k) C ′2u− g′2(k) C(k)

]
G′(k, u)∗ =

(C ′1u− g′1(k))T

(C ′2u− g′2(k))T

C(k)T

 .
We wrote out the adjoint explicitly because it makes it easier to derive the adjoint of the second-derivative
in a more cacheable form

(G′′(k, u)(∂k, ∂u))∗∂y =

 0 0 ∂yTC ′1(k)
0 0 ∂yTC ′2(k)

C ′1(k)T∂y C ′2(k)T∂y 0

∂k1∂k2
∂u


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Now, let us look at the code that caches these operations effectively. First, we start with the code that caches
the total derivative of G

% Evaluates the derivative of the equality constraint

function z = eq_p(params,x,dx)

z = deriv(params,x)*dx;

end

% Evaluates the adjoint of the derivative of the equality constraint

function z = eq_ps(params,x,dy)

z = deriv(params,x)’*dy;

end

% Finds the total derivative of the equality constraints

function D = deriv(params,x)

% Keep track of where the evaluation occurs

persistent cache

% Performance diagnostics

global diagnostics

% Figure out if we match a cached element

[cache iscached]=cache_search(cache,x);

% If we don’t have a match, cache a new factorization

if ~iscached

% Save the current location

cache{1}.x = x;

% Find the total derivative

cache{1}.D = [ ...

op_p(1,params,x)*x(params.idx.u)-rhs_p(1,params,x) ...

op_p(2,params,x)*x(params.idx.u)-rhs_p(2,params,x) ...

op(params,x)];

% Keep track that we cached a derivative

diagnostics.first_derivative_cached = ...

diagnostics.first_derivative_cached+1;

end

% Return the derivative

D = cache{1}.D;

end

% Prepares our cached element according to the following scheme

%

% 1. Item not cached, copy first cached element to the second. Return that no

% cached item found.

%

% 2. Item found in first cached element. Return that cached item found.

%

% 3. Item found in second cached element. Exchange first and second cached

% elements. Return that cached item found.

function [cache iscached] = cache_search(cache,x)

% Determine what cached item matches x

which = 0;

if ~isempty(cache)

for i=1:length(cache)
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if isequal(x,cache{i}.x)

which = i;

break;

end

end

end

% No items match

if which==0

iscached = 0;

if ~isempty(cache)

cache{2} = cache{1};

end

% First item matches

elseif which==1

iscached = 1;

% Second item matches

elseif which==2

iscached = 1;

cache(2:-1:1)=cache;

end

end

Here, we see that our reliance on computing an explicit representation for the total derivative of G simplifies
the functions eq p and eq ps to simple multiplications. Next, as before, we store the cached information in a
persistent variable called cache. However, unlike before, we store two separate cached items and manage them
with the function cache search. In this function, we keep the most recently used cached item as the first
element in the cache. When we evaluate the derivative at a new point, we discard the the second item. Recall,
we require two cached items due to an additional augmented system solve for the equality multiplier during
globalization. In a similar manner, we define the code that implements and caches the Schur preconditioner
as

% Evaluates the Schur preconditioner

function z = eq_schur(params,x,dx)

% Keep track of where the evaluation occurs

persistent cache

% Performance diagnostics

global diagnostics

% Here, we need to cache two elements due to the equality multiplier solve.

% Basically, the equality multiplier solve during globalization requires a

% solve at a new iterate. If globalization accepts this point, we can

% reuse this factorization. However, if globalization rejects this point,

% we want to use our old factorization.

% Figure out if we match a cached element

[cache iscached]=cache_search(cache,x);

% If we don’t have a match, cache a new factorization

if ~iscached

% Save the current location

cache{1}.x = x;

% Exact Schur preconditioner

if params.approx_schur==0
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% Factorize the total derivative of g’

[q cache{1}.r] = qr(deriv(params,x)’,0);

% Approximate Schur preconditioner

else

% Factorize the differential operator

[cache{1}.l cache{1}.u cache{1}.p cache{1}.q cache{1}.r] = ...

lu(op(params,x),’vector’);

end

% Keep track that we did a new factorization

diagnostics.factorization_cached = diagnostics.factorization_cached+1;

end

% Solve the linear system

if params.approx_schur==0

z = cache{1}.r\(cache{1}.r’\dx);

else

% Forward

z=zeros(params.nx,1);

z(cache{1}.q) = cache{1}.u\(cache{1}.l\(cache{1}.r(:,cache{1}.p)\dx));

% Adjoint

z = cache{1}.r(:,cache{1}.p)’\(cache{1}.l’\(cache{1}.u’\z(cache{1}.q)));

end

end

Like the code that cached the total derivative of G, we cache two elements in the persistent variable cache.
However, here, we store the factorization of the system G′(k, u)G′(k, u)∗. Note, caching the total derivative
above helps accelerate this code as well. As a side note, we actually define two different preconditioners in this
code. The true Schur preconditioner factorizes the system G′(k, u)G′(k, u)∗, which typically yields a dense
factorization due to the derivatives with respect to k. Alternatively, we can define an approximate Schur
preconditioner from the factorization of G′u(k, u)G′u(k, u)∗. Although we can no longer solve the augmented
system in exactly three iterations, this preconditioner allows us to factorize G′u(k, u) directly, which yields a
sparse decomposition. Finally, we cache the adjoint of the second derivative applied to the equality multiplier
with the code

% Evaluates the adjoint of second derivative of the equality constraint

function z = eq_pps(params,x,dx,dy)

z = deriv2(params,x,dy)*dx;

end

% Finds the second total derivative adjoint of the equality constraints applied

% to the equality multiplier

function D2 = deriv2(params,x,dy)

% Keep track of where the evaluation occurs

persistent cache

global diagnostics

% Cache the total derivative when possible

if isempty(cache) || ~isequal(x,cache.x) || ~isequal(dy,cache.dy)

% Save the current location

cache.x = x;

cache.dy = dy;

% Find the adjoint of the second derivative applied to the equality

% multiplier

cache.D2 = sparse(params.nx+2,params.nx+2);
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cache.D2(params.idx.k(1),params.idx.u) = dy’*op_p(1,params,x);

cache.D2(params.idx.k(2),params.idx.u) = dy’*op_p(2,params,x);

cache.D2(params.idx.u,params.idx.k(1)) = op_p(1,params,x)’*dy;

cache.D2(params.idx.u,params.idx.k(2)) = op_p(2,params,x)’*dy;

% Keep track that we cache a derivative

diagnostics.second_derivative_cached = ...

diagnostics.second_derivative_cached+1;

end

% Return the derivative

D2 = cache.D2;

end

As before, we store the cached information in a persistent variable called cache. The nuance in this case
is that we should check both x and dy when determining whether we’ve moved to a new point and need to
recompute the second derivative.
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7
Additional examples

During the configure process, we compile and install a variety of examples whenever the ENABLE CPP EXAMPLES,
ENABLE PYTHON EXAMPLES, or ENABLE MATLAB EXAMPLES are turned to ON. For reference, we include some of
these examples here.

7.1 Simple equality constrained

In our Simple equality constrained example, we optimize the formulation

min
x∈R2

x2 + y2

st (x− 2)2 + (y − 2)2 = 1

with the code:

Language C++

Code // Optimize a simple optimization problem with an optimal solution

// of (2-sqrt(2)/2,2-sqrt(2)/2).

#include "optizelle/optizelle.h"

#include "optizelle/vspaces.h"

#include "optizelle/json.h"

#include <iostream>

#include <iomanip>

#include <cstdlib>

//---Objective0---

// Squares its input

template <typename Real>

Real sq(Real const & x){

return x*x;

}

// Define a simple objective where

//

// f(x,y)=x^2+y^2

//

struct MyObj

: public Optizelle::ScalarValuedFunction <double,Optizelle::Rm>

{

typedef Optizelle::Rm <double> X;
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// Evaluation

double eval(X::Vector const & x) const {

return sq(x[0])+sq(x[1]);

}

// Gradient

void grad(

X::Vector const & x,

X::Vector & grad

) const {

grad[0]=2.*x[0];

grad[1]=2.*x[1];

}

// Hessian-vector product

void hessvec(

X::Vector const & x,

X::Vector const & dx,

X::Vector & H_dx

) const {

H_dx[0]=2.*dx[0];

H_dx[1]=2.*dx[1];

}

};

//---Objective1---

//---EqualityConstraint0---

// Define a simple equality constraint

//

// g(x,y)= [ (x-2)^2 + (y-2)^2 = 1 ]

//

struct MyEq

:public Optizelle::VectorValuedFunction<double,Optizelle::Rm,Optizelle::Rm>

{

typedef Optizelle::Rm <double> X;

typedef Optizelle::Rm <double> Y;

// y=g(x)

void eval(

X::Vector const & x,

Y::Vector & y

) const {

y[0] = sq(x[0]-2.)+sq(x[1]-2.)-1.;

}

// y=g’(x)dx

void p(

X::Vector const & x,

X::Vector const & dx,

Y::Vector & y

) const {

y[0] = 2.*(x[0]-2.)*dx[0]+2.*(x[1]-2.)*dx[1];

}

// xhat=g’(x)*dy

void ps(

X::Vector const & x,

163



Y::Vector const & dy,

X::Vector & xhat

) const {

xhat[0] = 2.*(x[0]-2.)*dy[0];

xhat[1] = 2.*(x[1]-2.)*dy[0];

}

// xhat=(g’’(x)dx)*dy

void pps(

X::Vector const & x,

X::Vector const & dx,

Y::Vector const & dy,

X::Vector & xhat

) const {

xhat[0] = 2.*dx[0]*dy[0];

xhat[1] = 2.*dx[1]*dy[0];

}

};

//---EqualityConstraint1---

//---Preconditioner0---

// Define a Schur preconditioner for the equality constraints

struct MyPrecon:

public Optizelle::Operator <double,Optizelle::Rm,Optizelle::Rm>

{

public:

typedef Optizelle::Rm <double> X;

typedef X::Vector X_Vector;

typedef Optizelle::Rm <double> Y;

typedef Y::Vector Y_Vector;

private:

X_Vector& x;

public:

MyPrecon(X::Vector& x_) : x(x_) {}

void eval(Y_Vector const & dy,Y_Vector & result) const {

result[0]=dy[0]/sq(4.*(x[0]-2.)+4.*sq(x[1]-2.));

}

};

//---Preconditioner1---

int main(int argc,char* argv[]){

// Read in the name for the input file

if(argc!=2) {

std::cerr << "simple_equalty <parameters>" << std::endl;

exit(EXIT_FAILURE);

}

auto fname = argv[1];

// Create a type shortcut

using Optizelle::Rm;

//---State0---

// Generate an initial guess

auto x = std::vector <double> {2.1, 1.1};

// Allocate memory for the equality multiplier

auto y = std::vector <double> (1);
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// Create an optimization state

Optizelle::EqualityConstrained <double,Rm,Rm>::State::t state(x,y);

//---State1---

//---Parameters0---

// Read the parameters from file

Optizelle::json::EqualityConstrained <double,Optizelle::Rm,Optizelle::Rm>

::read(fname,state);

//---Parameters1---

//---Functions0---

// Create a bundle of functions

Optizelle::EqualityConstrained <double,Rm,Rm>::Functions::t fns;

fns.f.reset(new MyObj);

fns.g.reset(new MyEq);

fns.PSchur_left.reset(new MyPrecon(state.x));

//---Functions1---

//---Solver0---

// Solve the optimization problem

Optizelle::EqualityConstrained <double,Rm,Rm>::Algorithms::getMin(

Optizelle::Messaging::stdout,fns,state);

//---Solver1---

//---Extract0---

// Print out the reason for convergence

std::cout << "The algorithm converged due to: " <<

Optizelle::OptimizationStop::to_string(state.opt_stop) <<

std::endl;

// Print out the final answer

std::cout << std::scientific << std::setprecision(16)

<< "The optimal point is: (" << state.x[0] << ’,’

<< state.x[1] << ’)’ << std::endl;

//---Extract1---

// Write out the final answer to file

Optizelle::json::EqualityConstrained <double,Optizelle::Rm,Optizelle::Rm>

::write_restart("solution.json",state);

// Return that we’ve exited successfuly

return EXIT_SUCCESS;

}

Language Python

Code # Optimize a simple optimization problem with an optimal solution

# of (2-sqrt(2)/2,2-sqrt(2)/2).

import Optizelle

import numpy

import sys

#---Objective0---

# Squares its input
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sq = lambda x:x*x

# Define a simple objective where

#

# f(x,y)=x^2+y^2

#

class MyObj(Optizelle.ScalarValuedFunction):

# Evaluation

def eval(self,x):

return sq(x[0])+sq(x[1])

# Gradient

def grad(self,x,grad):

grad[0]=2.*x[0]

grad[1]=2.*x[1]

# Hessian-vector product

def hessvec(self,x,dx,H_dx):

H_dx[0]=2.*dx[0]

H_dx[1]=2.*dx[1]

#---Objective1---

#---EqualityConstraint0---

# Define a simple equality constraint

#

# g(x,y)= [ (x-2)^2 + (y-2)^2 = 1 ]

#

class MyEq(Optizelle.VectorValuedFunction):

# y=g(x)

def eval(self,x,y):

y[0] = sq(x[0]-2.)+sq(x[1]-2.)-1.

# y=g’(x)dx

def p(self,x,dx,y):

y[0] = 2.*(x[0]-2.)*dx[0]+2.*(x[1]-2.)*dx[1]

# xhat=g’(x)*dy

def ps(self,x,dy,xhat):

xhat[0] = 2.*(x[0]-2.)*dy[0]

xhat[1] = 2.*(x[1]-2.)*dy[0]

# xhat=(g’’(x)dx)*dy

def pps(self,x,dx,dy,xhat):

xhat[0] = 2.*dx[0]*dy[0]

xhat[1] = 2.*dx[1]*dy[0]

#---EqualityConstraint1---

#---Preconditioner0---

# Define a Schur preconditioner for the equality constraints

class MyPrecon(Optizelle.Operator):

def eval(self,state,dy,result):

result[0]=dy[0]/sq(4.*(x[0]-2.)+4.*sq(x[1]-2.))

#---Preconditioner1---

# Read in the name for the input file
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if len(sys.argv)!=2:

sys.exit("simple_equality.py <parameters>")

fname=sys.argv[1]

#---State0---

# Generate an initial guess

x = numpy.array([2.1,1.1])

# Allocate memory for the equality multiplier

y = numpy.array([0.])

# Create an optimization state

state=Optizelle.EqualityConstrained.State.t(Optizelle.Rm,Optizelle.Rm,x,y)

#---State1---

#---Parameters0---

# Read the parameters from file

Optizelle.json.EqualityConstrained.read(Optizelle.Rm,Optizelle.Rm,fname,state)

#---Parameters1---

#---Functions0---

# Create a bundle of functions

fns=Optizelle.EqualityConstrained.Functions.t()

fns.f=MyObj()

fns.g=MyEq()

fns.PSchur_left=MyPrecon()

#---Functions1---

#---Solver0---

# Solve the optimization problem

Optizelle.EqualityConstrained.Algorithms.getMin(

Optizelle.Rm,Optizelle.Rm,Optizelle.Messaging.stdout,fns,state)

#---Solver1---

#---Extract0---

# Print out the reason for convergence

print "The algorithm converged due to: %s" % (

Optizelle.OptimizationStop.to_string(state.opt_stop))

# Print out the final answer

print "The optimal point is: (%e,%e)" % (state.x[0],state.x[1])

#---Extract1---

# Write out the final answer to file

Optizelle.json.EqualityConstrained.write_restart(

Optizelle.Rm,Optizelle.Rm,"solution.json",state)

Language MATLAB/Octave

Code % Optimize a simple optimization problem with an optimal solution

% of (2-sqrt(2)/2,2-sqrt(2)/2).

function simple_equality(fname)

% Read in the name for the input file

if nargin ~=1

error(’simple_equality <parameters>’);

end
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% Execute the optimization

main(fname);

end

%---Objective0---

% Squares its input

function z = sq(x)

z=x*x;

end

% Define a simple objective where

%

% f(x,y)=x^2+y^2

%

function self = MyObj()

% Evaluation

self.eval = @(x) sq(x(1))+sq(x(2));

% Gradient

self.grad = @(x) [ ...

2.*x(1); ...

2.*x(2)];

% Hessian-vector product

self.hessvec = @(x,dx) [ ...

2.*dx(1); ...

2.*dx(2)];

end

%---Objective1---

%---EqualityConstraint0---

% Define a simple equality constraint

%

% g(x,y)= [ (x-2)^2 + (y-2)^2 = 1 ]

%

function self = MyEq()

% y=g(x)

self.eval = @(x) [ ...

sq(x(1)-2.)+sq(x(2)-2.)-1.];

% y=g’(x)dx

self.p = @(x,dx) [ ...

2.*(x(1)-2.)*dx(1)+2.*(x(2)-2.)*dx(2)];

% xhat=g’(x)*dy

self.ps = @(x,dy) [ ...

2.*(x(1)-2.)*dy(1); ...

2.*(x(2)-2.)*dy(1)];

% xhat=(g’’(x)dx)*dy

self.pps = @(x,dx,dy) [ ...

2.*dx(1)*dy(1); ...

2.*dx(2)*dy(1) ];

end
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%---EqualityConstraint1---

%---Preconditioner0---

% Define a Schur preconditioner for the equality constraints

function self = MyPrecon()

self.eval=@(state,dy)dy(1)/sq(4.*(state.x(1)-2.)+4.*sq(state.x(2)-2.));

end

%---Preconditioner1---

% Actually runs the program

function main(fname)

% Grab the Optizelle library

global Optizelle;

setupOptizelle();

%---State0---

% Generate an initial guess

x = [2.1;1.1];

% Allocate memory for the equality multiplier

y = [0.];

% Create an optimization state

state= Optizelle.EqualityConstrained.State.t(Optizelle.Rm,Optizelle.Rm,x,y);

%---State1---

%---Parameters0---

% Read the parameters from file

state = Optizelle.json.EqualityConstrained.read( ...

Optizelle.Rm,Optizelle.Rm,fname,state);

%---Parameters1---

%---Functions0---

% Create a bundle of functions

fns=Optizelle.EqualityConstrained.Functions.t;

fns.f=MyObj();

fns.g=MyEq();

fns.PSchur_left=MyPrecon();

%---Functions1---

%---Solver0---

% Solve the optimization problem

state = Optizelle.EqualityConstrained.Algorithms.getMin( ...

Optizelle.Rm,Optizelle.Rm,Optizelle.Messaging.stdout,fns,state);

%---Solver1---

%---Extract0---

% Print out the reason for convergence

fprintf(’The algorithm converged due to: %s\n’, ...

Optizelle.OptimizationStop.to_string(state.opt_stop));

% Print out the final answer

fprintf(’The optimal point is: (%e,%e)\n’,state.x(1),state.x(2));

%---Extract1---

% Write out the final answer to file
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Optizelle.json.EqualityConstrained.write_restart( ...

Optizelle.Rm,Optizelle.Rm,’solution.json’,state);

end

7.2 Simple inequality constrained

In our Simple inequality constrained example, we optimize the formulation

min
x∈R2

(x+ 1)2 + (y + 1)2

st x+ 2y ≥ 1
2x+ y ≥ 1

with the code:

Language C++

Code // Optimize a simple optimization problem with an optimal solution

// of (1/3,1/3)

#include "optizelle/optizelle.h"

#include "optizelle/vspaces.h"

#include "optizelle/json.h"

#include <iostream>

#include <iomanip>

#include <cstdlib>

// Squares its input

template <typename Real>

Real sq(Real const & x){

return x*x;

}

// Define a simple objective where

//

// f(x,y)=(x+1)^2+(y+1)^2

//

struct MyObj

: public Optizelle::ScalarValuedFunction <double,Optizelle::Rm>

{

typedef Optizelle::Rm <double> X;

// Evaluation

double eval(const X::Vector& x) const {

return sq(x[0]+1.)+sq(x[1]+1.);

}

// Gradient

void grad(

X::Vector const & x,

X::Vector & grad

) const {

grad[0]=2.*x[0]+2.;

grad[1]=2.*x[1]+2.;

}

// Hessian-vector product

void hessvec(
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X::Vector const & x,

X::Vector const & dx,

X::Vector & H_dx

) const {

H_dx[0]=2.*dx[0];

H_dx[1]=2.*dx[1];

}

};

// Define simple inequalities

//

// h(x,y)= [ x + 2y >= 1 ]

// [ 2x + y >= 1 ]

//

struct MyIneq

:public Optizelle::VectorValuedFunction<double,Optizelle::Rm,Optizelle::Rm>

{

typedef Optizelle::Rm <double> X;

typedef Optizelle::Rm <double> Y;

// y=h(x)

void eval(

X::Vector const & x,

Y::Vector & y

) const {

y[0]=x[0]+2.*x[1]-1.;

y[1]=2.*x[0]+x[1]-1.;

}

// y=h’(x)dx

void p(

X::Vector const & x,

X::Vector const & dx,

Y::Vector & y

) const {

y[0]= dx[0]+2.*dx[1];

y[1]= 2.*dx[0]+dx[1];

}

// z=h’(x)*dy

void ps(

X::Vector const & x,

Y::Vector const & dy,

X::Vector & z

) const {

z[0]= dy[0]+2.*dy[1];

z[1]= 2.*dy[0]+dy[1];

}

// z=(h’’(x)dx)*dy

void pps(

X::Vector const & x,

X::Vector const & dx,

Y::Vector const & dy,

X::Vector & z

) const {

X::zero(z);
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}

};

int main(int argc,char* argv[]){

// Read in the name for the input file

if(argc!=2) {

std::cerr << "simple_inequality <parameters>" << std::endl;

exit(EXIT_FAILURE);

}

auto fname = argv[1];

// Create a type shortcut

using Optizelle::Rm;

// Generate an initial guess

auto x = std::vector <double> {2.1, 1.1};

// Allocate memory for the inequality multipler

auto z = std::vector <double>(2);

// Create an optimization state

Optizelle::InequalityConstrained <double,Rm,Rm>::State::t state(x,z);

// Read the parameters from file

Optizelle::json::InequalityConstrained <double,Optizelle::Rm,Optizelle::Rm>

::read(fname,state);

// Create a bundle of functions

Optizelle::InequalityConstrained <double,Rm,Rm>::Functions::t fns;

fns.f.reset(new MyObj);

fns.h.reset(new MyIneq);

// Solve the optimization problem

Optizelle::InequalityConstrained <double,Rm,Rm>::Algorithms

::getMin(Optizelle::Messaging::stdout,fns,state);

// Print out the reason for convergence

std::cout << "The algorithm converged due to: " <<

Optizelle::OptimizationStop::to_string(state.opt_stop) <<

std::endl;

// Print out the final answer

std::cout << std::scientific << std::setprecision(16)

<< "The optimal point is: (" << state.x[0] << ’,’

<< state.x[1] << ’)’ << std::endl;

// Write out the final answer to file

Optizelle::json::InequalityConstrained<double,Rm,Rm>

::write_restart("solution.json",state);

// Return that the program exited properly

return EXIT_SUCCESS;

}

Language Python

172



Code # Optimize a simple optimization problem with an optimal solution

# of (1/3,1/3)

import Optizelle

import numpy

import sys

# Squares its input

sq = lambda x:x*x

# Define a simple objective where

#

# f(x,y)=(x+1)^2+(y+1)^2

#

class MyObj(Optizelle.ScalarValuedFunction):

# Evaluation

def eval(self,x):

return sq(x[0]+1.)+sq(x[1]+1.)

# Gradient

def grad(self,x,grad):

grad[0]=2.*x[0]+2.

grad[1]=2.*x[1]+2.

# Hessian-vector product

def hessvec(self,x,dx,H_dx):

H_dx[0]=2.*dx[0]

H_dx[1]=2.*dx[1]

# Define simple inequalities

#

# h(x,y)= [ x + 2y >= 1 ]

# [ 2x + y >= 1 ]

#

class MyIneq(Optizelle.VectorValuedFunction):

# z=h(x)

def eval(self,x,z):

z[0]=x[0]+2.*x[1]-1.

z[1]=2.*x[0]+x[1]-1.

# z=h’(x)dx

def p(self,x,dx,z):

z[0]= dx[0]+2.*dx[1]

z[1]= 2.*dx[0]+dx[1]

# xhat=h’(x)*dz

def ps(self,x,dz,xhat):

xhat[0]= dz[0]+2.*dz[1]

xhat[1]= 2.*dz[0]+dz[1]

# xhat=(h’’(x)dx)*dz

def pps(self,x,dx,dz,xhat):

xhat.fill(0.)

# Read in the name for the input file
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if len(sys.argv)!=2:

sys.exit("simple_inequality.py <parameters>")

fname=sys.argv[1]

# Generate an initial guess

x = numpy.array([2.1,1.1])

# Allocate memory for the inequality multiplier

z = numpy.array([0.,0.])

# Create an optimization state

state=Optizelle.InequalityConstrained.State.t(Optizelle.Rm,Optizelle.Rm,x,z)

# Read the parameters from file

Optizelle.json.InequalityConstrained.read(Optizelle.Rm,Optizelle.Rm,fname,state)

# Create a bundle of functions

fns=Optizelle.InequalityConstrained.Functions.t()

fns.f=MyObj()

fns.h=MyIneq()

# Solve the optimization problem

Optizelle.InequalityConstrained.Algorithms.getMin(

Optizelle.Rm,Optizelle.Rm,Optizelle.Messaging.stdout,fns,state)

# Print out the reason for convergence

print "The algorithm converged due to: %s" % (

Optizelle.OptimizationStop.to_string(state.opt_stop))

# Print out the final answer

print "The optimal point is: (%e,%e)" % (state.x[0],state.x[1])

# Write out the final answer to file

Optizelle.json.InequalityConstrained.write_restart(

Optizelle.Rm,Optizelle.Rm,"solution.json",state)

Language MATLAB/Octave

Code % Optimize a simple optimization problem with an optimal solution

% of (1/3,1/3)

function simple_inequality(fname)

% Read in the name for the input file

if nargin ~=1

error(’simple_inequality <parameters>’);

end

% Execute the optimization

main(fname);

end

% Squares its input

function z = sq(x)

z=x*x;

end

% Define a simple objective where
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%

% f(x,y)=(x+1)^2+(y+1)^2

%

function self = MyObj()

% Evaluation

self.eval = @(x) sq(x(1)+1.)+sq(x(2)+1.);

% Gradient

self.grad = @(x) [

2.*x(1)+2.;

2.*x(2)+2.];

% Hessian-vector product

self.hessvec = @(x,dx) [

2.*dx(1);

2.*dx(2)];

end

% Define simple inequalities

%

% h(x,y)= [ x + 2y >= 1 ]

% [ 2x + y >= 1 ]

%

function self = MyIneq()

% z=h(x)

self.eval = @(x) [

x(1)+2.*x(2)-1. ;

2.*x(1)+x(2)-1. ];

% z=h’(x)dx

self.p = @(x,dx) [

dx(1)+2.*dx(2) ;

2.*dx(1)+dx(2) ];

% xhat=h’(x)*dz

self.ps = @(x,dz) [

dz(1)+2.*dz(2) ;

2.*dz(1)+dz(2) ];

% xhat=(h’’(x)dx)*dz

self.pps = @(x,dx,dz) zeros(2,1);

end

% Actually runs the program

function main(fname)

% Grab the Optizelle library

global Optizelle;

setupOptizelle();

% Generate an initial guess

x = [2.1;1.1];

% Allocate memory for the inequality multiplier

z = [0.;0.];
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% Create an optimization state

state=Optizelle.InequalityConstrained.State.t( ...

Optizelle.Rm,Optizelle.Rm,x,z);

% Read the parameters from file

state=Optizelle.json.InequalityConstrained.read( ...

Optizelle.Rm,Optizelle.Rm,fname,state);

% Create a bundle of functions

fns=Optizelle.InequalityConstrained.Functions.t;

fns.f=MyObj();

fns.h=MyIneq();

% Solve the optimization problem

state=Optizelle.InequalityConstrained.Algorithms.getMin( ...

Optizelle.Rm,Optizelle.Rm,Optizelle.Messaging.stdout,fns,state);

% Print out the reason for convergence

fprintf(’The algorithm converged due to: %s\n’, ...

Optizelle.OptimizationStop.to_string(state.opt_stop));

% Print out the final answer

fprintf(’The optimal point is: (%e,%e)\n’,state.x(1),state.x(2));

% Write out the final answer to file

Optizelle.json.InequalityConstrained.write_restart( ...

Optizelle.Rm,Optizelle.Rm,’solution.json’,state);

end

7.3 Simple constrained

In our Simple constrained example, we optimize the formulation

min
x∈R2

(x+ 1)2 + (y + 1)2

st x+ 2y = 1
2x+ y ≥ 1

with the code:

Language C++

Code // Optimize a simple optimization problem with an optimal

// solution of (1/3,1/3)

#include "optizelle/optizelle.h"

#include "optizelle/vspaces.h"

#include "optizelle/json.h"

#include <iostream>

#include <iomanip>

#include <cstdlib>

// Squares its input

template <typename Real>

Real sq(Real const & x){

return x*x;

}
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// Define a simple objective where

//

// f(x,y)=(x+1)^2+(y+1)^2

//

struct MyObj

: public Optizelle::ScalarValuedFunction <double,Optizelle::Rm>

{

typedef Optizelle::Rm <double> X;

// Evaluation

double eval(X::Vector const & x) const {

return sq(x[0]+1.)+sq(x[1]+1.);

}

// Gradient

void grad(

X::Vector const & x,

X::Vector & grad

) const {

grad[0]=2*x[0]+2;

grad[1]=2*x[1]+2;

}

// Hessian-vector product

void hessvec(

X::Vector const & x,

X::Vector const & dx,

X::Vector & H_dx

) const {

H_dx[0]=2.*dx[0];

H_dx[1]=2.*dx[1];

}

};

// Define a simple equality

//

// g(x,y)= [ x + 2y = 1 ]

//

struct MyEq

:public Optizelle::VectorValuedFunction<double,Optizelle::Rm,Optizelle::Rm>

{

typedef Optizelle::Rm <double> X;

typedef Optizelle::Rm <double> Y;

// y=g(x)

void eval(

X::Vector const & x,

Y::Vector & y

) const {

y[0]=x[0]+2.*x[1]-1.;

}

// y=g’(x)dx

void p(

X::Vector const & x,

X::Vector const & dx,
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Y::Vector & y

) const {

y[0]= dx[0]+2.*dx[1];

}

// xhat=g’(x)*dy

void ps(

X::Vector const & x,

Y::Vector const & dy,

X::Vector & xhat

) const {

xhat[0]= dy[0];

xhat[1]= 2.*dy[0];

}

// xhat=(g’’(x)dx)*dy

void pps(

X::Vector const & x,

X::Vector const & dx,

Y::Vector const & dy,

X::Vector & xhat

) const {

X::zero(xhat);

}

};

// Define a simple inequality

//

// h(x,y)= [ 2x + y >= 1 ]

//

struct MyIneq

:public Optizelle::VectorValuedFunction<double,Optizelle::Rm,Optizelle::Rm>

{

typedef Optizelle::Rm <double> X;

typedef Optizelle::Rm <double> Z;

// z=h(x)

void eval(

X::Vector const & x,

Z::Vector & z

) const {

z[0]=2.*x[0]+x[1]-1.;

}

// z=h’(x)dx

void p(

X::Vector const & x,

X::Vector const & dx,

Z::Vector & z

) const {

z[0]= 2.*dx[0]+dx[1];

}

// xhat=h’(x)*dz

void ps(

X::Vector const & x,

Z::Vector const & dz,
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X::Vector & xhat

) const {

xhat[0]= 2.*dz[0];

xhat[1]= dz[0];

}

// xhat=(h’’(x)dx)*dz

void pps(

X::Vector const & x,

X::Vector const & dx,

Z::Vector const & dz,

X::Vector & xhat

) const {

X::zero(xhat);

}

};

int main(int argc,char* argv[]){

// Read in the name for the input file

if(argc!=2) {

std::cerr << "simple_constrained <parameters>" << std::endl;

exit(EXIT_FAILURE);

}

auto fname = argv[1];

// Create a type shortcut

using Optizelle::Rm;

// Generate an initial guess for the primal

auto x = std::vector <double> {2.1, 1.1};

// Allocate memory for equality multiplier

auto y = std::vector <double> (1);

// Allocate memory for the inequality multiplier

auto z = std::vector <double> (1);

// Create an optimization state

Optizelle::Constrained <double,Rm,Rm,Rm>::State::t state(x,y,z);

// Read the parameters from file

Optizelle::json::Constrained <double,Rm,Rm,Rm>::read(fname,state);

// Create a bundle of functions

Optizelle::Constrained <double,Rm,Rm,Rm>::Functions::t fns;

fns.f.reset(new MyObj);

fns.g.reset(new MyEq);

fns.h.reset(new MyIneq);

// Solve the optimization problem

Optizelle::Constrained <double,Rm,Rm,Rm>::Algorithms

::getMin(Optizelle::Messaging::stdout,fns,state);

// Print out the reason for convergence

std::cout << "The algorithm converged due to: " <<

Optizelle::OptimizationStop::to_string(state.opt_stop) <<

std::endl;
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// Print out the final answer

std::cout << std::scientific << std::setprecision(16)

<< "The optimal point is: (" << state.x[0] << ’,’

<< state.x[1] << ’)’ << std::endl;

// Write out the final answer to file

Optizelle::json::Constrained <double,Rm,Rm,Rm>::write_restart(

"solution.json",state);

// Successful termination

return EXIT_SUCCESS;

}

Language Python

Code # Optimize a simple optimization problem with an optimal solution

# of (1/3,1/3)

import Optizelle

import numpy

import sys

# Squares its input

sq = lambda x:x*x

# Define a simple objective where

#

# f(x,y)=(x+1)^2+(y+1)^2

#

class MyObj(Optizelle.ScalarValuedFunction):

# Evaluation

def eval(self,x):

return sq(x[0]+1.)+sq(x[1]+1.)

# Gradient

def grad(self,x,grad):

grad[0]=2.*x[0]+2.

grad[1]=2.*x[1]+2.

# Hessian-vector product

def hessvec(self,x,dx,H_dx):

H_dx[0]=2.*dx[0]

H_dx[1]=2.*dx[1]

# Define a simple equality

#

# g(x,y)= [ x + 2y = 1 ]

#

class MyEq(Optizelle.VectorValuedFunction):

# y=g(x)

def eval(self,x,y):

y[0]=x[0]+2.*x[1]-1.
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# y=g’(x)dx

def p(self,x,dx,y):

y[0]= dx[0]+2.*dx[1]

# xhat=g’(x)*dy

def ps(self,x,dy,xhat):

xhat[0]= dy[0]

xhat[1]= 2.*dy[0]

# xhat=(g’’(x)dx)*dy

def pps(self,x,dx,dy,xhat):

xhat.fill(0.)

# Define simple inequalities

#

# h(x,y)= [ 2x + y >= 1 ]

#

class MyIneq(Optizelle.VectorValuedFunction):

# z=h(x)

def eval(self,x,z):

z[0]=2.*x[0]+x[1]-1.

# z=h’(x)dx

def p(self,x,dx,z):

z[0]= 2.*dx[0]+dx[1]

# xhat=h’(x)*dz

def ps(self,x,dz,xhat):

xhat[0]= 2.*dz[0]

xhat[1]= dz[0]

# xhat=(h’’(x)dx)*dz

def pps(self,x,dx,dz,xhat):

xhat.fill(0.)

# Read in the name for the input file

if len(sys.argv)!=2:

sys.exit("simple_constrained.py <parameters>")

fname=sys.argv[1]

# Generate an initial guess

x = numpy.array([2.1,1.1])

# Allocate memory for the equality multiplier

y = numpy.array([0.])

# Allocate memory for the inequality multiplier

z = numpy.array([0.])

# Create an optimization state

state=Optizelle.Constrained.State.t(

Optizelle.Rm,Optizelle.Rm,Optizelle.Rm,x,y,z)

# Read the parameters from file

Optizelle.json.Constrained.read(

Optizelle.Rm,Optizelle.Rm,Optizelle.Rm,fname,state)
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# Create a bundle of functions

fns=Optizelle.Constrained.Functions.t()

fns.f=MyObj()

fns.g=MyEq()

fns.h=MyIneq()

# Solve the optimization problem

Optizelle.Constrained.Algorithms.getMin(

Optizelle.Rm,Optizelle.Rm,Optizelle.Rm,Optizelle.Messaging.stdout,fns,state)

# Print out the reason for convergence

print "The algorithm converged due to: %s" % (

Optizelle.OptimizationStop.to_string(state.opt_stop))

# Print out the final answer

print "The optimal point is: (%e,%e)" % (state.x[0],state.x[1])

# Write out the final answer to file

Optizelle.json.Constrained.write_restart(Optizelle.Rm,Optizelle.Rm,Optizelle.Rm,

"solution.json",state)

Language MATLAB/Octave

Code % Optimize a simple optimization problem with an optimal solution

% of (1/3,1/3)

function simple_constrained(fname)

% Read in the name for the input file

if nargin ~=1

error(’simple_constrained <parameters>’);

end

% Execute the optimization

main(fname);

end

% Squares its input

function z = sq(x)

z=x*x;

end

% Define a simple objective where

%

% f(x,y)=(x+1)^2+(y+1)^2

%

function self = MyObj()

% Evaluation

self.eval = @(x) sq(x(1)+1.)+sq(x(2)+1.);

% Gradient

self.grad = @(x) [

2.*x(1)+2.;

2.*x(2)+2.];

% Hessian-vector product
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self.hessvec = @(x,dx) [

2.*dx(1);

2.*dx(2)];

end

% Define a simple equality

%

% g(x,y)= [ x + 2y = 1 ]

%

function self = MyEq()

% y=g(x)

self.eval = @(x) [x(1)+2.*x(2)-1.];

% y=g’(x)dx

self.p = @(x,dx) [dx(1)+2.*dx(2)];

% xhat=g’(x)*dy

self.ps = @(x,dy) [

dy(1);

2.*dy(1)];

% xhat=(g’’(x)dx)*dy

self.pps = @(x,dx,dy) zeros(2,1);

end

% Define simple inequalities

%

% h(x,y)= [ 2x + y >= 1 ]

%

function self = MyIneq()

% z=h(x)

self.eval = @(x) [

2.*x(1)+x(2)-1];

% z=h’(x)dx

self.p = @(x,dx) [

2.*dx(1)+dx(2)];

% xhat=h’(x)*dz

self.ps = @(x,dz) [

2.*dz(1)

dz(1)];

% xhat=(h’’(x)dx)*dz

self.pps = @(x,dx,dz) [ 0. ];

end

% Actually runs the program

function main(fname)

% Grab the Optizelle library

global Optizelle;

setupOptizelle();

% Generate an initial guess
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x = [2.1;1.1];

% Allocate memory for the equality multiplier

y = [0.];

% Allocate memory for the inequality multiplier

z = [0.];

% Create an optimization state

state = Optizelle.Constrained.State.t( ...

Optizelle.Rm,Optizelle.Rm,Optizelle.Rm,x,y,z);

% Read the parameters from file

state = Optizelle.json.Constrained.read( ...

Optizelle.Rm,Optizelle.Rm,Optizelle.Rm,fname,state);

% Create a bundle of functions

fns = Optizelle.Constrained.Functions.t;

fns.f = MyObj();

fns.g = MyEq();

fns.h = MyIneq();

% Solve the optimization problem

state = Optizelle.Constrained.Algorithms.getMin( ...

Optizelle.Rm,Optizelle.Rm,Optizelle.Rm,Optizelle.Messaging.stdout, ...

fns,state);

% Print out the reason for convergence

fprintf(’The algorithm converged due to: %s\n’, ...

Optizelle.OptimizationStop.to_string(state.opt_stop));

% Print out the final answer

fprintf(’The optimal point is: (%e,%e)\n’,state.x(1),state.x(2));

% Write out the final answer to file

Optizelle.json.Constrained.write_restart( ...

Optizelle.Rm,Optizelle.Rm,Optizelle.Rm,’solution.json’,state);

end

7.4 Rosenbrock advanced API

In our Rosenbrock advanced API example, we optimize the formulation

min
x∈R2

(1− x1)2 + 100(x2 − x21)2.

using the features described in our chapter Advanced API. We accomplish this with the code:

Language C++

Code // In this example, we duplicate the Rosenbrock example while demonstrating

// some of the more advanced API features such as custom vector spaces,

// messaging objects, and restarts.

#include <vector>

#include <iostream>

#include <iomanip>

#include <string>
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#include <sstream>

#include <algorithm>

#include "optizelle/optizelle.h"

#include "optizelle/json.h"

// Grab Optizelle’s Natural type

using Optizelle::Natural;

//---VectorSpace0---

// Defines the vector space used for optimization.

template <typename Real>

struct MyVS {

typedef std::vector <Real> Vector;

// Memory allocation and size setting

static Vector init(Vector const & x) {

return std::move(Vector(x.size()));

}

// y <- x (Shallow. No memory allocation.)

static void copy(Vector const & x, Vector & y) {

for(Natural i=0;i<x.size();i++){

y[i]=x[i];

}

}

// x <- alpha * x

static void scal(const Real& alpha, Vector & x) {

for(Natural i=0;i<x.size();i++){

x[i]=alpha*x[i];

}

}

// x <- 0

static void zero(Vector & x) {

for(Natural i=0;i<x.size();i++){

x[i]=0.;

}

}

// y <- alpha * x + y

static void axpy(const Real& alpha, Vector const & x, Vector & y) {

for(Natural i=0;i<x.size();i++){

y[i]=alpha*x[i]+y[i];

}

}

// innr <- <x,y>

static Real innr(Vector const & x,Vector const & y) {

Real z=0;

for(Natural i=0;i<x.size();i++)

z+=x[i]*y[i];

return z;

}

// x <- random

static void rand(Vector & x){

185



std::mt19937 gen(1);

std::uniform_real_distribution<Real> dis(Real(0.),Real(1.));

for(Natural i=0;i<x.size();i++)

x[i]=Real(dis(gen));

}

// Jordan product, z <- x o y.

static void prod(Vector const & x, Vector const & y, Vector & z) {

for(Natural i=0;i<x.size();i++)

z[i]=x[i]*y[i];

}

// Identity element, x <- e such that x o e = x.

static void id(Vector & x) {

for(Natural i=0;i<x.size();i++)

x[i]=Real(1.);

}

// Jordan product inverse, z <- inv(L(x)) y where L(x) y = x o y.

static void linv(Vector const & x,Vector const & y,Vector & z) {

for(Natural i=0;i<x.size();i++)

z[i]=y[i]/x[i];

}

// Barrier function, barr <- barr(x) where x o grad barr(x) = e.

static Real barr(Vector const & x) {

Real z=Real(0.);

for(Natural i=0;i<x.size();i++)

z+=log(x[i]);

return z;

}

// Line search, srch <- argmax {alpha \in Real >= 0 : alpha x + y >= 0}

// where y > 0.

static Real srch(Vector const & x,Vector const & y) {

// Line search parameter

Real alpha=std::numeric_limits <Real>::infinity();

// Search for the optimal linesearch parameter.

for(Natural i=0;i<x.size();i++) {

if(x[i] < Real(0.)) {

Real alpha0 = -y[i]/x[i];

alpha = alpha0 < alpha ? alpha0 : alpha;

}

}

return alpha;

}

// Symmetrization, x <- symm(x) such that L(symm(x)) is a symmetric

// operator.

static void symm(Vector & x) { }

};

//---VectorSpace1---

// Squares its input

template <typename Real>

Real sq(Real x){
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return x*x;

}

// Define the Rosenbrock function where

//

// f(x,y)=(1-x)^2+100(y-x^2)^2

//

struct Rosenbrock : public Optizelle::ScalarValuedFunction <double,MyVS> {

typedef MyVS <double> X;

// Evaluation of the Rosenbrock function

double eval(X::Vector const & x) const {

return sq(1.-x[0])+100.*sq(x[1]-sq(x[0]));

}

// Gradient

void grad(

X::Vector const & x,

X::Vector & g

) const {

g[0]=-400*x[0]*(x[1]-sq(x[0]))-2*(1-x[0]);

g[1]=200*(x[1]-sq(x[0]));

}

// Hessian-vector product

void hessvec(

X::Vector const & x,

X::Vector const & dx,

X::Vector & H_dx

) const {

H_dx[0]= (1200*sq(x[0])-400*x[1]+2)*dx[0]-400*x[0]*dx[1];

H_dx[1]= -400*x[0]*dx[0] + 200*dx[1];

}

};

// Define a perfect preconditioner for the Hessian

struct RosenHInv : public Optizelle::Operator <double,MyVS,MyVS> {

public:

typedef MyVS <double> X;

typedef X::Vector X_Vector;

private:

X_Vector& x;

public:

RosenHInv(X::Vector& x_) : x(x_) {}

void eval(const X_Vector& dx,X_Vector &result) const {

auto one_over_det=1./(80000.*sq(x[0])-80000.*x[1]+400.);

result[0]=one_over_det*(200.*dx[0]+400.*x[0]*dx[1]);

result[1]=one_over_det*

(400.*x[0]*dx[0]+(1200.*x[0]*x[0]-400.*x[1]+2.)*dx[1]);

}

};

//---Messaging0---

// Define a custom messaging object

void mymessaging(std::string const & msg) {

std::cout << "PRINT: " << msg << std::endl;

}
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//---Messaging1---

//---Serialization0---

// Define serialization routines for MyVS

namespace Optizelle {

namespace json {

template <>

struct Serialization <double,MyVS> {

static std::string serialize(

typename MyVS <double>::Vector const & x,

std::string const & name,

Natural const & iter

) {

// Create a string with the format

// [ x1, x2, ..., xm ].

std::stringstream x_json;

x_json.setf(std::ios::scientific);

x_json.precision(16);

x_json << "[ ";

for(Natural i=0;i<x.size()-1;i++)

x_json << x[i] << ", ";

x_json << x.back() << " ]";

// Return the string

return x_json.str();

}

static MyVS <double>::Vector deserialize(

typename MyVS <double>::Vector const & x_,

std::string const & x_json_

) {

// Make a copy of x_json_

auto x_json = x_json_;

// Filter out the commas and brackets from the string

char formatting[] = "[],";

for(Natural i=0;i<3;i++)

x_json.erase(

std::remove(x_json.begin(),x_json.end(),formatting[i]),

x_json.end());

// Create a new vector that we eventually return

auto x = std::vector <double>(x_.size());

// Create a stream out of x_json

std::stringstream ss(x_json);

// Read in each of the elements

for(auto i=0;i<x.size();i++)

ss >> x[i];

// Return the result

return std::move(x);

}

};

}

}

//---Serialization1---
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//---RestartManipulator0---

// Define a state manipulator that writes out the optimization state at

// each iteration.

struct MyRestartManipulator

: Optizelle::StateManipulator <Optizelle::Unconstrained <double,MyVS> >

{

void eval(

typename Optizelle::Unconstrained <double,MyVS>

::Functions::t const & fns,

typename Optizelle::Unconstrained <double,MyVS>

::State::t & state,

Optizelle::OptimizationLocation::t const & loc

) const {

switch(loc) {

// At the end of the optimization iteration, write the restart file

case Optizelle::OptimizationLocation::EndOfOptimizationIteration: {

// Create a reasonable file name

std::stringstream ss;

ss << "rosenbrock_advanced_api_";

ss << std::setw(4) << std::setfill(’0’) << state.iter;

ss << ".json";

// Write the restart file

Optizelle::json::Unconstrained <double,MyVS>::write_restart(

ss.str(),state);

break;

} default:

break;

}

}

};

//---RestartManipulator1---

int main(int argc,char* argv[]) {

// Read in the name for the parameters and optional restart file

if(!(argc==2 || argc==3)) {

std::cerr << "rosenbrock_advanced_api <parameters>" << std::endl;

std::cerr << "rosenbrock_advanced_api <parameters> <restart>"

<< std::endl;

exit(EXIT_FAILURE);

}

auto pname = argv[1];

auto rname = argc==3 ? argv[2] : "";

// Generate an initial guess for Rosenbrock

auto x = std::vector <double> {-1.2, 1.};

// Create an unconstrained state based on this vector

Optizelle::Unconstrained <double,MyVS>::State::t state(x);

//---ReadRestart0---

// If we have a restart file, read in the parameters

if(argc==3)

Optizelle::json::Unconstrained <double,MyVS>::read_restart(

rname,x,state);
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// Read additional parameters from file

Optizelle::json::Unconstrained <double,MyVS>::read(pname,state);

//---ReadRestart1---

// Create the bundle of functions

Optizelle::Unconstrained <double,MyVS>::Functions::t fns;

fns.f.reset(new Rosenbrock);

fns.PH.reset(new RosenHInv(state.x));

//---Solver0---

// Solve the optimization problem

Optizelle::Unconstrained <double,MyVS>::Algorithms

::getMin(mymessaging,fns,state,MyRestartManipulator());

//---Solver1---

// Print out the reason for convergence

std::cout << "The algorithm converged due to: " <<

Optizelle::OptimizationStop::to_string(state.opt_stop) << std::endl;

// Print out the final answer

std::cout << "The optimal point is: (" << state.x[0] << ’,’

<< state.x[1] << ’)’ << std::endl;

//---WriteRestart0---

// Write out the final answer to file

Optizelle::json::Unconstrained <double,MyVS>::write_restart(

"solution.json",state);

//---WriteRestart1---

}

Language Python

Code # In this example, we duplicate the Rosenbrock example while demonstrating

# some of the more advanced API features such as custom vector spaces,

# messaging objects, and restarts.

import Optizelle

import sys

import copy

import array

import math

#---VectorSpace0---

# Defines the vector space used for optimization.

class MyVS(object):

@staticmethod

def init(x):

"""Memory allocation and size setting"""

return copy.deepcopy(x)

@staticmethod

def copy(x,y):

"""y <- x (Shallow. No memory allocation.)"""

y[:]=x[:]

@staticmethod
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def scal(alpha,x):

"""x <- alpha * x"""

for i in xrange(0,len(x)):

x[i]=alpha*x[i]

@staticmethod

def zero(x):

"""x <- 0"""

for i in xrange(0,len(x)):

x[i]=0.

@staticmethod

def axpy(alpha,x,y):

"""y <- alpha * x + y"""

for i in xrange(0,len(x)):

y[i]=alpha*x[i]+y[i]

@staticmethod

def innr(x,y):

"""<- <x,y>"""

return reduce(lambda z,xy:xy[0]*xy[1]+z,zip(x,y),0.)

@staticmethod

def rand(x):

"""x <- random"""

for i in xrange(0,len(x)):

x[i]=random.uniform(0.,1.)

@staticmethod

def prod(x,y,z):

"""Jordan product, z <- x o y"""

for i in xrange(0,len(x)):

z[i]=x[i]*y[i]

@staticmethod

def id(x):

"""Identity element, x <- e such that x o e = x"""

for i in xrange(0,len(x)):

x[i]=1.

@staticmethod

def linv(x,y,z):

"""Jordan product inverse, z <- inv(L(x)) y where L(x) y = x o y"""

for i in xrange(0,len(x)):

z[i]=y[i]/x[i]

@staticmethod

def barr(x):

"""Barrier function, <- barr(x) where x o grad barr(x) = e"""

return reduce(lambda x,y:x+math.log(y),x,0.)

@staticmethod

def srch(x,y):

"""Line search, <- argmax {alpha \in Real >= 0 : alpha x + y >= 0} where y > 0"""

alpha = float("inf")

for i in xrange(0,len(x)):

if x[i] < 0:
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alpha0 = -y[i]/x[i]

if alpha0 < alpha:

alpha=alpha0

return alpha

@staticmethod

def symm(x):

"""Symmetrization, x <- symm(x) such that L(symm(x)) is a symmetric operator"""

pass

#---VectorSpace1---

# Squares its input

sq = lambda x:x*x

# Define the Rosenbrock function where

#

# f(x,y)=(1-x)^2+100(y-x^2)^2

#

class Rosenbrock(Optizelle.ScalarValuedFunction):

# Evaluation of the Rosenbrock function

def eval(self,x):

return sq(1.-x[0])+100.*sq(x[1]-sq(x[0]))

# Gradient

def grad(self,x,grad):

grad[0]=-400*x[0]*(x[1]-sq(x[0]))-2*(1-x[0])

grad[1]=200*(x[1]-sq(x[0]))

# Hessian-vector product

def hessvec(self,x,dx,H_dx):

H_dx[0] = (1200*sq(x[0])-400*x[1]+2)*dx[0]-400*x[0]*dx[1]

H_dx[1] = -400*x[0]*dx[0] + 200*dx[1]

# Define a perfect preconditioner for the Hessian

class RosenHInv(Optizelle.Operator):

def eval(self,state,dx,result):

x = state.x

one_over_det=1./(80000.*sq(x[0])-80000.*x[1]+400.)

result[0]=one_over_det*(200.*dx[0]+400.*x[0]*dx[1])

result[1]=(one_over_det*

(400.*x[0]*dx[0]+(1200.*x[0]*x[0]-400.*x[1]+2.)*dx[1]))

#---Messaging0---

# Define a custom messaging object

def mymessaging(msg):

"""Prints out normal diagnostic information"""

sys.stdout.write("PRINT: %s\n" %(msg))

#---Messaging1---

#---Serialization0---

def serialize_MyVS(x,name,iter):

"""Serializes an array for the vector space MyVS"""

# Create the json representation

x_json="[ "

for i in xrange(0,len(x)):

x_json += str(x[i]) + ", "
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x_json=x_json[0:-2]

x_json +=" ]"

return x_json

def deserialize_MyVS(x,x_json):

"""Deserializes an array for the vector space MyVS"""

# Eliminate all whitespace

x_json="".join(x_json.split())

# Check if we’re a vector

if x_json[0:1]!="[" or x_json[-1:]!="]":

raise TypeError("Attempted to deserialize a non-array vector.")

# Eliminate the initial and final delimiters

x_json=x_json[1:-1]

# Create a list of the numbers involved

x_json=x_json.split(",")

# Convert the strings to numbers

x_json=map(lambda x:float(x),x_json)

# Create a MyVS vector

return array.array(’d’,x_json)

# Register the serialization routines for arrays

def MySerialization():

Optizelle.json.Serialization.serialize.register(

serialize_MyVS,array.array)

Optizelle.json.Serialization.deserialize.register(

deserialize_MyVS,array.array)

#---Serialization1---

#---RestartManipulator0---

# Define a state manipulator that writes out the optimization state at

# each iteration.

class MyRestartManipulator(Optizelle.StateManipulator):

def eval(self,fns,state,loc):

# At the end of the optimization iteration, write the restart file

if loc == Optizelle.OptimizationLocation.EndOfOptimizationIteration:

# Create a reasonable file name

ss = "rosenbrock_advanced_api_%04d.json" % (state.iter)

# Write the restart file

Optizelle.json.Unconstrained.write_restart(MyVS,ss,state)

#---RestartManipulator1---

# Register the serialization routines

MySerialization()

# Read in the name for the input file

if not(len(sys.argv)==2 or len(sys.argv)==3):

sys.exit("python rosenbrock_advanced_api.py <parameters>\n" +

"python rosenbrock_advanced_api.py <parameters> <restart>")

pname = sys.argv[1]
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rname = sys.argv[2] if len(sys.argv)==3 else ""

# Generate an initial guess for Rosenbrock

x = array.array(’d’,[-1.2,1.0])

# Create an unconstrained state based on this vector

state=Optizelle.Unconstrained.State.t(MyVS,x)

#---ReadRestart0---

# If we have a restart file, read in the parameters

if len(sys.argv)==3:

Optizelle.json.Unconstrained.read_restart(MyVS,rname,x,state)

# Read additional parameters from file

Optizelle.json.Unconstrained.read(MyVS,pname,state)

#---ReadRestart1---

# Create the bundle of functions

fns=Optizelle.Unconstrained.Functions.t()

fns.f=Rosenbrock()

fns.PH=RosenHInv()

#---Solver0---

# Solve the optimization problem

Optizelle.Unconstrained.Algorithms.getMin(

MyVS,mymessaging,fns,state,MyRestartManipulator())

#---Solver1---

# Print out the reason for convergence

print("The algorithm converged due to: %s" % (

Optizelle.OptimizationStop.to_string(state.opt_stop)))

# Print out the final answer

print("The optimal point is: (%e,%e)" % (state.x[0],state.x[1]))

#---WriteRestart0---

# Write out the final answer to file

Optizelle.json.Unconstrained.write_restart(MyVS,"solution.json",state)

#---WriteRestart1---

Language MATLAB/Octave

Code % In this example, we duplicate the Rosenbrock example while demonstrating

% some of the more advanced API features such as custom vector spaces,

% messaging objects, and restarts.

function rosenbrock_advanced_api(pname,rname)

% Read in the name for the input file

if ~(nargin==1 || nargin==2)

error(sprintf(’%s\n%s’, ...

’rosenbrock_advanced_api(parameters)\n’, ...

’rosenbrock_advanced_api(parameters,restart)’));

end

% Execute the optimization

if nargin==1
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main(pname);

else

main(pname,rname);

end

end

%---VectorSpace0---

% Convert a vector to structure

function y = tostruct(x)

y = struct(’data’,x);

end

% Defines the vector space used for optimization.

function self = MyVS()

% Memory allocation and size setting

self.init = @(x) x;

% <- x (Shallow. No memory allocation.)

self.copy = @(x) x;

% <- alpha * x

self.scal = @(alpha,x) tostruct(alpha*x.data);

% <- 0

self.zero = @(x) tostruct(zeros(size(x.data)));

% <- alpha * x + y

self.axpy = @(alpha,x,y) tostruct(alpha * x.data + y.data);

%<- <x,y>

self.innr = @(x,y)x.data’*y.data;

% <- random

self.rand = @(x)tostruct(randn(size(x.data)));

% Jordan product, z <- x o y.

self.prod = @(x,y)tostruct(x.data .* y.data);

% Identity element, x <- e such that x o e = x.

self.id = @(x)tostruct(ones(size(x.data)));

% Jordan product inverse, z <- inv(L(x)) y where L(x) y = x o y.

self.linv = @(x,y)tostruct(y.data ./ x.data);

% Barrier function, barr <- barr(x) where x o grad barr(x) = e.

self.barr = @(x)sum(log(x.data));

% Line search, srch <- argmax {alpha \in Real >= 0 : alpha x + y >= 0}

% where y > 0.

self.srch = @(x,y) feval(@(z)min([min(z(find(z>0)));inf]),-y.data ./x.data);

% Symmetrization, x <- symm(x) such that L(symm(x)) is a symmetric

% operator.

self.symm = @(x)x;

end
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%---VectorSpace1---

% Squares its input

function z = sq(x)

z=x*x;

end

% Define the Rosenbrock function where

%

% f(x,y)=(1-x)^2+100(y-x^2)^2

%

function self = Rosenbrock()

% Evaluation of the Rosenbrock function

self.eval = @(x) feval(@(x)sq(1.-x(1))+100.*sq(x(2)-sq(x(1))),x.data);

% Gradient

self.grad = @(x) tostruct(feval(@(x)[

-400.*x(1)*(x(2)-sq(x(1)))-2.*(1.-x(1));

200.*(x(2)-sq(x(1)))],x.data));

% Hessian-vector product

self.hessvec = @(x,dx) tostruct(feval(@(x,dx)[

(1200.*sq(x(1))-400.*x(2)+2)*dx(1)-400.*x(1)*dx(2);

-400.*x(1)*dx(1)+200.*dx(2)],x.data,dx.data));

end

% Define a perfect preconditioner for the Hessian

function self = RosenHInv()

self.eval = @(state,dx) eval(state,dx);

end

function result = eval(state,dx)

x = state.x.data;

dx = dx.data;

one_over_det=1./(80000.*sq(x(1))-80000.*x(2)+400.);

result = tostruct([

one_over_det*(200.*dx(1)+400.*x(1)*dx(2));

one_over_det*...

(400.*x(1)*dx(1)+(1200.*x(1)*x(1)-400.*x(2)+2.)*dx(2))]);

end

%---Messaging0---

% Define a custom messaging object

function MyMessaging(msg)

fprintf(’PRINT: %s\n’,msg);

end

%---Messaging1---

%---Serialization0---

% Define serialization routines for MyVS

function MySerialization()

global Optizelle;

Optizelle.json.Serialization.serialize( ...

’register’, ...

@(x,name,iter)strrep(mat2str(x.data’),’ ’,’, ’), ...

@(x)isstruct(x) && isfield(x,’data’) && isvector(x.data));

Optizelle.json.Serialization.deserialize( ...
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’register’, ...

@(x,x_json)tostruct(str2num(x_json)’), ...

@(x)isstruct(x) && isfield(x,’data’) && isvector(x.data));

end

%---Serialization1---

%---RestartManipulator0---

% Define a state manipulator that writes out the optimization state at

% each iteration.

function smanip=MyRestartManipulator()

smanip=struct(’eval’,@(fns,state,loc)MyRestartManipulator_(fns,state,loc));

end

function state=MyRestartManipulator_(fns,state,loc)

global Optizelle;

% At the end of the optimization iteration, write the restart file

if(loc == Optizelle.OptimizationLocation.EndOfOptimizationIteration)

% Create a reasonable file name

ss = sprintf(’rosenbrock_advanced_api_%04d.json’,state.iter);

% Write the restart file

Optizelle.json.Unconstrained.write_restart(MyVS(),ss,state);

end

end

%---RestartManipulator1---

% Actually runs the program

function main(pname,rname)

% Grab the Optizelle library

global Optizelle;

setupOptizelle();

% Register the serialization routines

MySerialization();

% Generate an initial guess for Rosenbrock

x = tostruct([-1.2;1.]);

% Create an unconstrained state based on this vector

state=Optizelle.Unconstrained.State.t(MyVS(),x);

%---ReadRestart0---

% If we have a restart file, read in the parameters

if(nargin==2)

state = Optizelle.json.Unconstrained.read_restart(MyVS(),rname,x);

end

% Read additional parameters from file

state=Optizelle.json.Unconstrained.read(MyVS(),pname,state);

%---ReadRestart1---

% Create the bundle of functions

fns=Optizelle.Unconstrained.Functions.t;

fns.f=Rosenbrock();

fns.PH=RosenHInv();
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%---Solver0---

% Solve the optimization problem

state=Optizelle.Unconstrained.Algorithms.getMin( ...

MyVS(),@MyMessaging,fns,state,MyRestartManipulator());

%---Solver1---

% Print out the reason for convergence

fprintf(’The algorithm converged due to: %s\n’, ...

Optizelle.OptimizationStop.to_string(state.opt_stop));

% Print out the final answer

fprintf(’The optimal point is: (%e,%e)\n’,state.x.data(1),state.x.data(2));

%---WriteRestart0---

% Write out the final answer to file

Optizelle.json.Unconstrained.write_restart(MyVS(),’solution.json’,state);

%---WriteRestart1---

end

7.5 Simple constrained advanced API

In our Simple constrained advanced API example, we optimize the formulation

min
x∈R2

(x+ 1)2 + (y + 1)2

st x+ 2y = 1
2x+ y ≥ 1

which uses the same formulation as our example Simple constrained. It differs in that we implement a restart
mechanism that writes our variables to an external file. By using the features described in our chapter
Advanced API, we accomplish this with the code:

Language C++

Code // Optimize a simple optimization problem with an optimal

// solution of (1/3,1/3)

#include "optizelle/optizelle.h"

#include "optizelle/vspaces.h"

#include "optizelle/json.h"

#include <iostream>

#include <iomanip>

#include <cstdlib>

#include <cstring>

// Grab Optizelle’s Natural type

using Optizelle::Natural;

// Defines the vector space used for optimization.

template <typename Real>

struct MyVS {

typedef std::vector <Real> Vector;

// Memory allocation and size setting

static Vector init(Vector const & x) {

return std::move(Vector(x.size()));

}
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// y <- x (Shallow. No memory allocation.)

static void copy(Vector const & x, Vector & y) {

for(Natural i=0;i<x.size();i++){

y[i]=x[i];

}

}

// x <- alpha * x

static void scal(Real const & alpha, Vector & x) {

for(Natural i=0;i<x.size();i++){

x[i]=alpha*x[i];

}

}

// x <- 0

static void zero(Vector & x) {

for(Natural i=0;i<x.size();i++){

x[i]=0.;

}

}

// y <- alpha * x + y

static void axpy(Real const & alpha, Vector const & x, Vector & y) {

for(Natural i=0;i<x.size();i++){

y[i]=alpha*x[i]+y[i];

}

}

// innr <- <x,y>

static Real innr(Vector const & x,Vector const & y) {

Real z=0;

for(Natural i=0;i<x.size();i++)

z+=x[i]*y[i];

return z;

}

// x <- random

static void rand(Vector & x){

std::mt19937 gen(1);

std::uniform_real_distribution<Real> dis(Real(0.),Real(1.));

for(Natural i=0;i<x.size();i++)

x[i]=Real(dis(gen));

}

// Jordan product, z <- x o y.

static void prod(Vector const & x, Vector const & y, Vector & z) {

for(Natural i=0;i<x.size();i++)

z[i]=x[i]*y[i];

}

// Identity element, x <- e such that x o e = x.

static void id(Vector & x) {

for(Natural i=0;i<x.size();i++)

x[i]=Real(1.);

}

// Jordan product inverse, z <- inv(L(x)) y where L(x) y = x o y.

static void linv(Vector const & x,Vector const & y,Vector & z) {
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for(Natural i=0;i<x.size();i++)

z[i]=y[i]/x[i];

}

// Barrier function, barr <- barr(x) where x o grad barr(x) = e.

static Real barr(Vector const & x) {

Real z=Real(0.);

for(Natural i=0;i<x.size();i++)

z+=log(x[i]);

return z;

}

// Line search, srch <- argmax {alpha \in Real >= 0 : alpha x + y >= 0}

// where y > 0.

static Real srch(Vector const & x,Vector const & y) {

// Line search parameter

Real alpha=std::numeric_limits <Real>::infinity();

// Search for the optimal linesearch parameter.

for(Natural i=0;i<x.size();i++) {

if(x[i] < Real(0.)) {

Real alpha0 = -y[i]/x[i];

alpha = alpha0 < alpha ? alpha0 : alpha;

}

}

return alpha;

}

// Symmetrization, x <- symm(x) such that L(symm(x)) is a symmetric

// operator.

static void symm(Vector & x) { }

};

// Squares its input

template <typename Real>

Real sq(Real const & x){

return x*x;

}

// Define a simple objective where

//

// f(x,y)=(x+1)^2+(y+1)^2

//

struct MyObj : public Optizelle::ScalarValuedFunction <double,MyVS> {

typedef MyVS <double> X;

// Evaluation

double eval(const X::Vector& x) const {

return sq(x[0]+1.)+sq(x[1]+1.);

}

// Gradient

void grad(

X::Vector const & x,

X::Vector & grad

) const {
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grad[0]=2*x[0]+2;

grad[1]=2*x[1]+2;

}

// Hessian-vector product

void hessvec(

X::Vector const & x,

X::Vector const & dx,

X::Vector & H_dx

) const {

H_dx[0]=2.*dx[0];

H_dx[1]=2.*dx[1];

}

};

// Define a simple equality

//

// g(x,y)= [ x + 2y = 1 ]

//

struct MyEq :public Optizelle::VectorValuedFunction<double,MyVS,MyVS> {

typedef MyVS <double> X;

typedef MyVS <double> Y;

// y=g(x)

void eval(

X::Vector const & x,

Y::Vector & y

) const {

y[0]=x[0]+2.*x[1]-1.;

}

// y=g’(x)dx

void p(

X::Vector const & x,

X::Vector const & dx,

Y::Vector & y

) const {

y[0]= dx[0]+2.*dx[1];

}

// xhat=g’(x)*dy

void ps(

X::Vector const & x,

Y::Vector const & dy,

X::Vector & xhat

) const {

xhat[0]= dy[0];

xhat[1]= 2.*dy[0];

}

// xhat=(g’’(x)dx)*dy

void pps(

X::Vector const & x,

X::Vector const & dx,

Y::Vector const & dy,

X::Vector & xhat

) const {
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X::zero(xhat);

}

};

// Define a simple inequality

//

// h(x,y)= [ 2x + y >= 1 ]

//

struct MyIneq :public Optizelle::VectorValuedFunction<double,MyVS,MyVS> {

typedef MyVS <double> X;

typedef MyVS <double> Z;

// z=h(x)

void eval(

X::Vector const & x,

Z::Vector & z

) const {

z[0]=2.*x[0]+x[1]-1.;

}

// z=h’(x)dx

void p(

X::Vector const & x,

X::Vector const & dx,

Z::Vector & z

) const {

z[0]= 2.*dx[0]+dx[1];

}

// xhat=h’(x)*dz

void ps(

X::Vector const & x,

Z::Vector const & dz,

X::Vector & xhat

) const {

xhat[0]= 2.*dz[0];

xhat[1]= dz[0];

}

// xhat=(h’’(x)dx)*dz

void pps(

X::Vector const & x,

X::Vector const & dx,

Z::Vector const & dz,

X::Vector & xhat

) const {

X::zero(xhat);

}

};

//---Serialization0---

// Define serialization routines for MyVS

namespace Optizelle {

namespace json {

template <>

struct Serialization <double,MyVS> {

static std::string serialize(
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typename MyVS <double>::Vector const & x,

std::string const & name,

Natural const & iter

) {

// Create the filename where we put our vector

std::stringstream fname;

fname << "./restart/";

fname << name << ".";

fname << std::setw(4) << std::setfill(’0’) << iter;

fname << ".txt";

// Actually write the vector there

std::ofstream fout(fname.str());

if(fout.fail()) {

std::stringstream msg;

msg << "While writing the variable " << name

<< " to file on iteration " << iter

<< ", unable to open the file: "

<< fname.str() << ".";

throw Optizelle::Exception::t(msg.str());

}

fout.setf(std::ios::scientific);

fout.precision(16);

for(Natural i=0;i<x.size();i++)

fout << x[i] << std::endl;

// Close out the file

fout.close();

// Use this filename as the json string

std::stringstream x_json;

x_json << "\"" << fname.str() << "\"";

return x_json.str();

}

static MyVS <double>::Vector deserialize(

typename MyVS <double>::Vector const & x_,

std::string const & x_json_

) {

// Make a copy of x_json_

auto x_json = x_json_;

// Filter out the quotes and newlines from the string

auto formatting = "\"\n";

for(auto i=0;i<2;i++)

x_json.erase(

std::remove(x_json.begin(),x_json.end(),formatting[i]),

x_json.end());

// Open the file for reading

std::ifstream fin(x_json.c_str());

if(!fin.is_open())

throw Optizelle::Exception::t(

"Error while opening the file " + x_json + ": " +

strerror(errno));

// Create a new vector that we eventually return

auto x = std::vector <double> (x_.size());
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// Read in each of the elements

for(auto i=0;i<x.size();i++)

fin >> x[i];

// Return the result

return std::move(x);

}

};

}

}

//---Serialization1---

// Define a state manipulator that writes out the optimization state at

// each iteration.

struct MyRestartManipulator : Optizelle::StateManipulator <

Optizelle::Constrained <double,MyVS,MyVS,MyVS> >

{

void eval(

typename Optizelle::Constrained <double,MyVS,MyVS,MyVS>

::Functions::t const & fns,

typename Optizelle::Constrained <double,MyVS,MyVS,MyVS>

::State::t & state,

Optizelle::OptimizationLocation::t const & loc

) const {

switch(loc) {

// At the end of the optimization iteration, write the restart file

case Optizelle::OptimizationLocation::EndOfOptimizationIteration: {

// Create a reasonable file name

std::stringstream ss;

ss << "simple_constrained_advanced_api_";

ss << std::setw(4) << std::setfill(’0’) << state.iter;

ss << ".json";

// Write the restart file

Optizelle::json::Constrained <double,MyVS,MyVS,MyVS>::write_restart(

ss.str(),state);

break;

} default:

break;

}

}

};

int main(int argc,char* argv[]){

// Read in the name for the parameters and optional restart file

if(!(argc==2 || argc==3)) {

std::cerr << "simple_constrained_advanced_api <parameters>"<< std::endl;

std::cerr << "simple_constrained_advanced_api <parameters> <restart>"

<< std::endl;

exit(EXIT_FAILURE);

}

auto pname = argv[1];

auto rname = argc==3 ? argv[2] : "";

// Generate an initial guess for the primal

auto x = std::vector <double> {2.1, 1.1};
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// Allocate memory for equality multiplier

auto y = std::vector <double> (1);

// Allocate memory for the inequality multiplier

auto z = std::vector <double> (1);

// Create an optimization state

Optizelle::Constrained <double,MyVS,MyVS,MyVS>::State::t state(x,y,z);

// If we have a restart file, read in the parameters

if(argc==3)

Optizelle::json::Constrained <double,MyVS,MyVS,MyVS>::read_restart(

rname,x,y,z,state);

// Read the parameters from file

Optizelle::json::Constrained <double,MyVS,MyVS,MyVS>::read(pname,state);

// Create a bundle of functions

Optizelle::Constrained <double,MyVS,MyVS,MyVS>::Functions::t fns;

fns.f.reset(new MyObj);

fns.g.reset(new MyEq);

fns.h.reset(new MyIneq);

// Solve the optimization problem

Optizelle::Constrained <double,MyVS,MyVS,MyVS>::Algorithms

::getMin(Optizelle::Messaging::stdout,fns,state,MyRestartManipulator());

// Print out the reason for convergence

std::cout << "The algorithm converged due to: " <<

Optizelle::OptimizationStop::to_string(state.opt_stop) <<

std::endl;

// Print out the final answer

std::cout << std::scientific << std::setprecision(16)

<< "The optimal point is: (" << state.x[0] << ’,’

<< state.x[1] << ’)’ << std::endl;

// Write out the final answer to file

Optizelle::json::Constrained <double,MyVS,MyVS,MyVS>::write_restart(

"solution.json",state);

// Successful termination

return EXIT_SUCCESS;

}

Language Python

Code # Optimize a simple optimization problem with an optimal solution

# of (1/3,1/3)

import Optizelle

import sys

import copy

import array

import math
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# Defines the vector space used for optimization.

class MyVS(object):

@staticmethod

def init(x):

"""Memory allocation and size setting"""

return copy.deepcopy(x)

@staticmethod

def copy(x,y):

"""y <- x (Shallow. No memory allocation.)"""

y[:]=x[:]

@staticmethod

def scal(alpha,x):

"""x <- alpha * x"""

for i in xrange(0,len(x)):

x[i]=alpha*x[i]

@staticmethod

def zero(x):

"""x <- 0"""

for i in xrange(0,len(x)):

x[i]=0.

@staticmethod

def axpy(alpha,x,y):

"""y <- alpha * x + y"""

for i in xrange(0,len(x)):

y[i]=alpha*x[i]+y[i]

@staticmethod

def innr(x,y):

"""<- <x,y>"""

return reduce(lambda z,xy:xy[0]*xy[1]+z,zip(x,y),0.)

@staticmethod

def rand(x):

"""x <- random"""

for i in xrange(0,len(x)):

x[i]=random.uniform(0.,1.)

@staticmethod

def prod(x,y,z):

"""Jordan product, z <- x o y"""

for i in xrange(0,len(x)):

z[i]=x[i]*y[i]

@staticmethod

def id(x):

"""Identity element, x <- e such that x o e = x"""

for i in xrange(0,len(x)):

x[i]=1.

@staticmethod

def linv(x,y,z):

"""Jordan product inverse, z <- inv(L(x)) y where L(x) y = x o y"""
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for i in xrange(0,len(x)):

z[i]=y[i]/x[i]

@staticmethod

def barr(x):

"""Barrier function, <- barr(x) where x o grad barr(x) = e"""

return reduce(lambda x,y:x+math.log(y),x,0.)

@staticmethod

def srch(x,y):

"""Line search, <- argmax {alpha \in Real >= 0 : alpha x + y >= 0} where y > 0"""

alpha = float("inf")

for i in xrange(0,len(x)):

if x[i] < 0:

alpha0 = -y[i]/x[i]

if alpha0 < alpha:

alpha=alpha0

return alpha

@staticmethod

def symm(x):

"""Symmetrization, x <- symm(x) such that L(symm(x)) is a symmetric operator"""

pass

# Squares its input

sq = lambda x:x*x

# Define a simple objective where

#

# f(x,y)=(x+1)^2+(y+1)^2

#

class MyObj(Optizelle.ScalarValuedFunction):

# Evaluation

def eval(self,x):

return sq(x[0]+1.)+sq(x[1]+1.)

# Gradient

def grad(self,x,grad):

grad[0]=2.*x[0]+2.

grad[1]=2.*x[1]+2.

# Hessian-vector product

def hessvec(self,x,dx,H_dx):

H_dx[0]=2.*dx[0]

H_dx[1]=2.*dx[1]

# Define a simple equality

#

# g(x,y)= [ x + 2y = 1 ]

#

class MyEq(Optizelle.VectorValuedFunction):

# y=g(x)

def eval(self,x,y):

y[0]=x[0]+2.*x[1]-1.
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# y=g’(x)dx

def p(self,x,dx,y):

y[0]= dx[0]+2.*dx[1]

# xhat=g’(x)*dy

def ps(self,x,dy,xhat):

xhat[0]= dy[0]

xhat[1]= 2.*dy[0]

# xhat=(g’’(x)dx)*dy

def pps(self,x,dx,dy,xhat):

MyVS.zero(xhat)

# Define simple inequalities

#

# h(x,y)= [ 2x + y >= 1 ]

#

class MyIneq(Optizelle.VectorValuedFunction):

# z=h(x)

def eval(self,x,z):

z[0]=2.*x[0]+x[1]-1.

# z=h’(x)dx

def p(self,x,dx,z):

z[0]= 2.*dx[0]+dx[1]

# xhat=h’(x)*dz

def ps(self,x,dz,xhat):

xhat[0]= 2.*dz[0]

xhat[1]= dz[0]

# xhat=(h’’(x)dx)*dz

def pps(self,x,dx,dz,xhat):

MyVS.zero(xhat)

#---Serialization0---

def serialize_MyVS(x,name,iter):

"""Serializes an array for the vector space MyVS"""

# Create the filename where we put our vector

fname = "./restart/%s.%04d.txt" % (name,iter)

# Actually write the vector there

fout = open(fname,"w");

for i in xrange(0,len(x)):

fout.write("%1.16e\n" % x[i])

# Close out the file

fout.close()

# Use this filename as the json string

x_json = "\"%s\"" % fname

return x_json

def deserialize_MyVS(x_,x_json):

"""Deserializes an array for the vector space MyVS"""
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# Eliminate all whitespace

x_json="".join(x_json.split())

# Eliminate the initial and final delimiters

x_json=x_json[1:-1]

# Open the file for reading

fin = open(x_json,"r")

# Allocate a new vector to return

x = copy.deepcopy(x_)

# Read in each of the elements

for i in xrange(0,len(x)):

x[i] = float(fin.readline())

# Close out the file

fin.close()

# Return the result

return x

# Register the serialization routines for arrays

def MySerialization():

Optizelle.json.Serialization.serialize.register(

serialize_MyVS,array.array)

Optizelle.json.Serialization.deserialize.register(

deserialize_MyVS,array.array)

#---Serialization1---

# Define a state manipulator that writes out the optimization state at

# each iteration.

class MyRestartManipulator(Optizelle.StateManipulator):

def eval(self,fns,state,loc):

# At the end of the optimization iteration, write the restart file

if loc == Optizelle.OptimizationLocation.EndOfOptimizationIteration:

# Create a reasonable file name

ss = "simple_constrained_advanced_api_%04d.json" % (state.iter)

# Write the restart file

Optizelle.json.Constrained.write_restart(

MyVS,MyVS,MyVS,ss,state)

# Register the serialization routines

MySerialization()

# Read in the name for the input file

if not(len(sys.argv)==2 or len(sys.argv)==3):

sys.exit("python simple_constrained_advanced_api.py <parameters>\n" +

"python simple_constrained_advanced_api.py <parameters> <restart>")

pname = sys.argv[1]

rname = sys.argv[2] if len(sys.argv)==3 else ""

# Generate an initial guess

x = array.array(’d’,[2.1,1.1])
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# Allocate memory for the equality multiplier

y = array.array(’d’,[0.])

# Allocate memory for the inequality multiplier

z = array.array(’d’,[0.])

# Create an optimization state

state=Optizelle.Constrained.State.t(MyVS,MyVS,MyVS,x,y,z)

# If we have a restart file, read in the parameters

if len(sys.argv)==3:

Optizelle.json.Constrained.read_restart(MyVS,MyVS,MyVS,rname,x,y,z,state)

# Read the parameters from file

Optizelle.json.Constrained.read(MyVS,MyVS,MyVS,pname,state)

# Create a bundle of functions

fns=Optizelle.Constrained.Functions.t()

fns.f=MyObj()

fns.g=MyEq()

fns.h=MyIneq()

# Solve the optimization problem

Optizelle.Constrained.Algorithms.getMin(

MyVS,MyVS,MyVS,Optizelle.Messaging.stdout,fns,state,MyRestartManipulator())

# Print out the reason for convergence

print("The algorithm converged due to: %s" % (

Optizelle.OptimizationStop.to_string(state.opt_stop)))

# Print out the final answer

print("The optimal point is: (%e,%e)" % (state.x[0],state.x[1]))

# Write out the final answer to file

Optizelle.json.Constrained.write_restart(MyVS,MyVS,MyVS,"solution.json",state)

Language MATLAB/Octave

Code % Optimize a simple optimization problem with an optimal solution

% of (1/3,1/3)

function simple_constrained_advanced_api(pname,rname)

% Read in the name for the input file

if ~(nargin==1 || nargin==2)

error(sprintf(’%s\n%s’, ...

’simple_constrained_advanced_api(parameters)\n’, ...

’simple_constrained_advanced_api(parameters,restart)’));

end

% Execute the optimization

if nargin==1

main(pname);

else

main(pname,rname);

end

end
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% Convert a vector to structure

function y = tostruct(x)

y = struct(’data’,x);

end

% Defines the vector space used for optimization.

function self = MyVS()

% Memory allocation and size setting

self.init = @(x) x;

% <- x (Shallow. No memory allocation.)

self.copy = @(x) x;

% <- alpha * x

self.scal = @(alpha,x) tostruct(alpha*x.data);

% <- 0

self.zero = @(x) tostruct(zeros(size(x.data)));

% <- alpha * x + y

self.axpy = @(alpha,x,y) tostruct(alpha * x.data + y.data);

%<- <x,y>

self.innr = @(x,y)x.data’*y.data;

% <- random

self.rand = @(x)tostruct(randn(size(x.data)));

% Jordan product, z <- x o y.

self.prod = @(x,y)tostruct(x.data .* y.data);

% Identity element, x <- e such that x o e = x.

self.id = @(x)tostruct(ones(size(x.data)));

% Jordan product inverse, z <- inv(L(x)) y where L(x) y = x o y.

self.linv = @(x,y)tostruct(y.data ./ x.data);

% Barrier function, barr <- barr(x) where x o grad barr(x) = e.

self.barr = @(x)sum(log(x.data));

% Line search, srch <- argmax {alpha \in Real >= 0 : alpha x + y >= 0}

% where y > 0.

self.srch = @(x,y) feval(@(z)min([min(z(find(z>0)));inf]),-y.data ./x.data);

% Symmetrization, x <- symm(x) such that L(symm(x)) is a symmetric

% operator.

self.symm = @(x)x;

end

% Squares its input

function z = sq(x)

z=x*x;

end

% Define a simple objective where
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%

% f(x,y)=(x+1)^2+(y+1)^2

%

function self = MyObj()

% Evaluation

self.eval = @(x) feval(@(x)sq(x(1)+1.)+sq(x(2)+1.),x.data);

% Gradient

self.grad = @(x) tostruct(feval(@(x)[

2.*x(1)+2.;

2.*x(2)+2.],x.data));

% Hessian-vector product

self.hessvec = @(x,dx) tostruct(feval(@(x,dx)[

2.*dx(1);

2.*dx(2)],x.data,dx.data));

end

% Define a simple equality

%

% g(x,y)= [ x + 2y = 1 ]

%

function self = MyEq()

% y=g(x)

self.eval = @(x) tostruct(feval(@(x)[x(1)+2.*x(2)-1.],x.data));

% y=g’(x)dx

self.p = @(x,dx) tostruct(feval(@(x,dx)[dx(1)+2.*dx(2)],x.data,dx.data));

% xhat=g’(x)*dy

self.ps = @(x,dy) tostruct(feval(@(x,dy)[

dy(1);

2.*dy(1)],x.data,dy.data));

% xhat=(g’’(x)dx)*dy

self.pps = @(x,dx,dy) tostruct(zeros(2,1));

end

% Define simple inequalities

%

% h(x,y)= [ 2x + y >= 1 ]

%

function self = MyIneq()

% z=h(x)

self.eval = @(x) tostruct(feval(@(x)[

2.*x(1)+x(2)-1],x.data));

% z=h’(x)dx

self.p = @(x,dx) tostruct(feval(@(x,dx)[

2.*dx(1)+dx(2)],x.data,dx.data));

% xhat=h’(x)*dz

self.ps = @(x,dz) tostruct(feval(@(x,dz)[

2.*dz(1)
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dz(1)],x.data,dz.data));

% hat=(h’’(x)dx)*dz

self.pps = @(x,dx,dz) tostruct([ 0. ]);

end

%---Serialization0---

% Define the serialize routine for MyVS

function x_json=serialize_MyVS(x,name,iter)

% Create the filename where we put our vector

fname=sprintf(’./restart/%s.%04d.txt’,name,iter);

% Actually write the vector there

dlmwrite(fname,x.data);

% Use this filename as the json string

x_json = sprintf(’\"%s\"’,fname);

end

% Define the deserialize routine for MyVS

function x=deserialize_MyVS(x_,x_json)

% Filter out the quotes and newlines from the string

x_json = strrep(x_json,’"’,’’);

x_json = strrep(x_json,sprintf(’\n’),’’);

% Read the data into x

x=tostruct(dlmread(x_json));

end

% Define serialization routines for MyVS

function MySerialization()

global Optizelle;

Optizelle.json.Serialization.serialize( ...

’register’, ...

@(x,name,iter)serialize_MyVS(x,name,iter), ...

@(x)isstruct(x) && isfield(x,’data’) && isvector(x.data));

Optizelle.json.Serialization.deserialize( ...

’register’, ...

@(x,x_json)deserialize_MyVS(x,x_json), ...

@(x)isstruct(x) && isfield(x,’data’) && isvector(x.data));

end

%---Serialization1---

% Define a state manipulator that writes out the optimization state at

% each iteration.

function smanip=MyRestartManipulator()

smanip=struct(’eval’,@(fns,state,loc)MyRestartManipulator_(fns,state,loc));

end

function state=MyRestartManipulator_(fns,state,loc)

global Optizelle;

% At the end of the optimization iteration, write the restart file

if(loc == Optizelle.OptimizationLocation.EndOfOptimizationIteration)

% Create a reasonable file name

ss = sprintf(’simple_constrained_advanced_api_%04d.json’,state.iter);

% Write the restart file
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Optizelle.json.Constrained.write_restart( ...

MyVS(),MyVS(),MyVS(),ss,state);

end

end

% Actually runs the program

function main(pname,rname)

% Grab the Optizelle library

global Optizelle;

setupOptizelle();

% Register the serialization routines

MySerialization();

% Generate an initial guess

x = tostruct([2.1;1.1]);

% Allocate memory for the equality multiplier

y = tostruct([0.]);

% Allocate memory for the inequality multiplier

z = tostruct([0.]);

% Create an optimization state

state = Optizelle.Constrained.State.t(MyVS(),MyVS(),MyVS(),x,y,z);

% If we have a restart file, read in the parameters

if(nargin==2)

state = Optizelle.json.Constrained.read_restart( ...

MyVS(),MyVS(),MyVS(),rname,x,y,z);

end

% Read the parameters from file

state = Optizelle.json.Constrained.read(MyVS(),MyVS(),MyVS(),pname,state);

% Create a bundle of functions

fns = Optizelle.Constrained.Functions.t;

fns.f = MyObj();

fns.g = MyEq();

fns.h = MyIneq();

% Solve the optimization problem

state = Optizelle.Constrained.Algorithms.getMin( ...

MyVS(),MyVS(),MyVS(),Optizelle.Messaging.stdout,fns,state, ...

MyRestartManipulator());

% Print out the reason for convergence

fprintf(’The algorithm converged due to: %s\n’, ...

Optizelle.OptimizationStop.to_string(state.opt_stop));

% Print out the final answer

fprintf(’The optimal point is: (%e,%e)\n’,state.x.data(1),state.x.data(2));

% Write out the final answer to file

Optizelle.json.Constrained.write_restart( ...

MyVS(),MyVS(),MyVS(),’solution.json’,state);

214



end
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8
Algorithmic discussion

In the following chapter, we give a brief discussion of the algorithms we include within Optizelle and references
to more detailed descriptions.

Algorithm Barzilai-Borwein

Description We implement the Barzilai-Borwein algorithm by setting dir to SteepestDescent and
kind to either TwoPointA or TwoPointB. Specifically, TwoPointA and TwoPointB refer
to the algorithms generated by equation (5) and (6) in Barzilai and Borwein’s paper,
respectively. Since this algorithm requires two points before it may commence, we use
a GoldenSection search on the first iteration.

• Jonathan Barzilai and Jonathan M. Borwein. Two-point step size gradient meth-
ods. IMA Journal of Numerical Analysis, 8(1):141–148, 1988.

Algorithm Golden-section search

Description We implement a straightforward golden-section search. For historical significance, we
refer to Kiefer’s paper, but a much more complete description can be found in Bazaraa,
Sherali, and Shetty’s book.

• J. Kiefer. Sequential minimax search for a maximum. Proceedings of the American
Mathematical Society, 4(3):502–506, 1953.

• Mokhtar S. Bazaraa, Hanif D. Sherali, and C. M. Shetty. Nonlinear Programming:
Theory And Algorithms. Wiley-Interscience, 3rd edition, 2006.

Algorithm BFGS

Description Our BFGS implementation uses a limited-memory, iterative reformulation of the algo-
rithm based on a generic inner product. Our limited-memory implementation differs
from that of Byrd, Nocedal, and Schnabel’s because we do not form a compact repre-
sentation, but instead use a scratch space whose size is equal to stored history. In
addition, since we do not check the Wolfe conditions, we do a hard check to insure that
BFGS operator remains positive definite. We refer to the collection of 1970s papers
for historical significance, but note that a much better presentation of the algorithm
can be found in Nocedal and Wright’s book.

• C. G. Broyden. The convergence of a class of double-rank minimization algo-
rithms: 2. the new algorithm. IMA Journal of Applied Mathematics, 6(3):222–231,
1970.

• R. Fletcher. A new approach to variable metric algorithms. The Computer
Journal, 13(3):317–322, 1970.
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• D. Goldfarb. A family of variable metric updates derived by variational means.
Mathematics of Computation, 24:23–26, 1970.

• D. F. Shanno. Conditioning of quasi-Newton methods for function minimization.
Mathematics of Computation, 24(111):647–656, 1970.

• Richard H. Byrd, Jorge Nocedal, and Robert B. Schnabel. Representations of
quasi-Newton matrices and their use in limited memory methods. Mathematical
Programming, 63(2):129–156, 1994.

• Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer, 2nd
edition, 2006.

Algorithm SR1

Description Similar to BFGS, our SR1 implementation uses a limited-memory, iterative reformula-
tion of the algorithm based on a generic inner product. As before, our limited-memory
implementation differs from that of Byrd, Nocedal, and Schnabel’s because we do not
form a compact representation, but instead use a scratch space whose size is equal
to stored history. We refer to Broyden’s paper for historical significance, but note
that a much better presentation of the algorithm can be found in Nocedal and Wright’s
book.

• C. G. Broyden. Quasi-Newton methods and their application to function mini-
mization. Mathematics of Computation, 21:368–381, 1967.

• Richard H. Byrd, Jorge Nocedal, and Robert B. Schnabel. Representations of
quasi-Newton matrices and their use in limited memory methods. Mathematical
Programming, 63(2):129–156, 1994.

• Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer, 2nd
edition, 2006.

Algorithm Nonlinear-CG

Description We use a standard implementation of nonlinear-CG. On the first iteration, we move in
the steepest descent direction, but use the specified nonlinear-CG direction on subse-
quent iterations. Since we do not check the strong-Wolfe condition, we do a hard check
to insure a descent direction. If we do not, we negate the search direction. Although
we reference the original papers from Hestenes and Stiefel, Fletcher and Reeves, and
Polak and Ribiere, Nocedal and Wright give a nicer presentation. In addition, Hager
and Zhang present a nice overview of the different nonlinear-CG variations in their
survey paper.

• Magnus R. Hestenes and Eduard Stiefel. Methods of conjugate gradients for
solving linear systems. Journal of Research of the National Bureau of Standards,
49(6):409–436, 1952.

• R. Fletcher and C. M. Reeves. Function minimization by conjugate gradients.
The Computer Journal, 7(2):149–154, 1964.

• E. Polak and G. Ribiere. Note sur la convergence de méthodes de directions con-
juguées. Revue Française d’Informatique et de Recherche Opérationnelle, 16:35–
43, 1969.

• Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer, 2nd
edition, 2006.

• William W. Hager and Hongchao Zhang. A survey of nonlinear conjugate gradient
methods. Pacific Journal of Optimization, 2(1):35–58, January 2006.
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Algorithm Trust-region Newton

Description Our trust-region Newton implementation uses truncated-CG to solve the trust-region
subproblem. Both Conn, Gould, and Toint’s as well as Nocedal and Wright’s book
give good descriptions of the algorithm.

• Andrew R. Conn, Nicholas I. M. Gould, and Philippe L. Toint. Trust-Region
Methods. SIAM, 2000.

• Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer, 2nd
edition, 2006.

Algorithm Newton-CG

Description We base our Newton-CG algorithm on truncated CG and not a Hessian modification.
Nocedal and Wright’s book describes this algorithm.

• Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer, 2nd
edition, 2006.

Algorithm Truncated CG

Description Our version of truncated CG actually possesses the ability to over orthogonalize against
previous Krylov vectors, which is controlled by the parameters trunc orthog storage max

and trunc orthog iter max. In addition, we have added a safeguard procedure for
the interior point method that insures truncated CG always produces a solution fea-
sible with respect to the inequality constraint. This safeguard process is similar to
the one used by Byrd, Hribar, and Nocedal in their NITRO algorithm. Finally, for
the inexact composite-step SQP method, we use the heuristic described in appendix
B by Heinkenschloss and Ridzal to detect instability in the algorithm. Historically,
Toint and Steihaug give a description of truncated-CG in their respective papers. For
a modern treatment of truncated-CG see Conn, Gould, and Toint’s book.

• Ph. L. Toint. Towards an efficient sparsity exploiting Newton method for mini-
mization. pages 57–88. 1981.

• Trond Steihaug. The conjugate gradient method and trust regions in large scale
optimization. SIAM Journal on Numerical Analysis, 20(3):626–637, 1983.

• Andrew R. Conn, Nicholas I. M. Gould, and Philippe L. Toint. Trust-Region
Methods. SIAM, 2000.

• Richard H. Byrd, Mary E. Hribar, and Jorge Nocedal. An interior point algorithm
for large-scale nonlinear programming. SIAM Journal on Optimization, 9(4):877–
900, 1999.

• Matthias Heinkenschloss and Denis Ridzal. A matrix-free trust-region sqp method
for equality constrained optimization. SIAM Journal on Optimization, 24(3):1507–
1541, 2014.

Algorithm Interior-point method

Description Our interior point method is based on a new derivation of the primal-dual interior
point equations based on pseudo-Euclidean-Jordan algebras. We say pseudo because
we do not require commutativity in the Jordan product. Specifically, our derivation
begins from the optimality conditions

∇f(x)− h′(x)∗z =0,

h(x) �0,

z �0,

h(x) ◦ z =0
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in the case of inequality constrained problems and

∇f(x) + g′(x)∗y − h′(x)∗z =0,

g(x) =0,

h(x) �0,

z �0,

h(x) ◦ z =0

in the case of constrained problems. Here, ◦ denotes the Jordan product that we refer
to as prod. Since we use a composite-step SQP method for constrained problems,
we ignore the feasibility condition, g(x) = 0, in the constrained problem. Simply,
we handle feasibility with respect to this constraint with the quasi-normal step. This
allows us to reduce both sets of optimality conditions to

grad(x, y)− h′(x)∗z =0,

h(x) �0,

z �0,

h(x) ◦ z =0

where

grad(x, y) =

{
∇f(x) Inequality constrained problems,
∇f(x) + g′(x)∗y Constrained problems.

Then, using a standard interior-point formulation, we perturb the optimality condi-
tions into

grad(x, y)− h′(x)∗z =0

h(x) �0

z �0

h(x) ◦ z =µe.

where e denotes the identity element in the pseudo-Euclidean-Jordan algebra, which we
refer to as id. Next, we apply Newton’s method to the nonlinear system of equations

grad(x, y)− h′(x)∗z =0,

h(x) ◦ z =µe,

which yields the system[
hess(x, y) −h′(x)∗

h′(x) · ◦z h(x) ◦ ·

] [
δx
δz

]
=

[
−grad(x, y) + h′(x)∗z
−h(x) ◦ z + µe

]
where

hess(x, y) =

{
∇2f(x) Inequality constrained problems,
∇2f(x) + (g′′(x)·)∗y Constrained problems.

Using the second equation in the Newton system, we solve for δz and find that

δz = −z + L(h(x))−1(−h′(x)δx ◦ z + µe)

where L(h(x))−1 denotes the inverse of the linear operator induced by the Jordan
product, ◦, which we refer to as linv. In other words, h(x) ◦ z = L(h(x))z. Then, we
plug this equation into the first equation and reduce our Newton system to

[hess(x, y) + h′(x)∗(L(h(x))−1(h′(x) · ◦z))]δx = −grad(x, y) + µh′(x)∗(L(h(x))−1e).
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At this point, we solve the Newton system using truncated CG. As a note, when using
a line-search method that is not Newton-CG, we using a different scheme and instead
set

z = mu · L(h(x))−1e.

This gives us a log-barrier algorithm for these methods. In short, without solving a
Newton system, the equations for dz don’t make sense, so we instead fallback on a
log-barrier method, which does not require them. In order to maintain strict feasibility
of h(x) and z we safeguard our steps dx and dz using the fraction to the boundary
rule

h(x + alpha x · dx) ≥(1− gamma)h(x)

z + alpha z · dz ≥(1− gamma)z)

h(x + alpha x qn · dx n) ≥(1− gamma · zeta)h(x)

Note, the last inequality only occurs in constrained problems. When we enforce these
rules depends on the algorithm. Specifically, trust-region methods enforce these bounds
during the truncated-CG solve of the optimality conditions. Since truncated CG may
violate the inequality bounds periodically throughout the optimality solve, we save
the last feasible iterate during the computation. When we exit, we take the last
feasible iterate and step and compute the safeguard search, which satisfies the fraction
to the boundary rule above. In order to prevent too many discarded steps due to
the safeguard, we limit the maximum number of infeasible steps that we allow to be
safeguard failed max. Although our process is slightly different than their paper,
how we embed the safeguard into truncated CG is similar to what Byrd, Hribar, and
Nocedal do in their implementation of NITRO. In a line-search method, we safeguard
the step prior to the line search. Specifically, we shorten alpha0 so that the maximum
step length taken by the line search does not exceed our fraction to the boundary rule.
Finally, in the inexact composite step SQP method, we also safeguard our quasi-normal
step by enforcing the fraction to the boundary rule during the dogleg computation.
In each case, we calculate the distance to the boundary with the user-defined function
srch. In our Rm and SQL vector spaces, we use a closed form formula for linear and
second-order cones and the Arnoldi algorithm for semidefinite cones. We reduce mu

prior to the truncated-CG solve for the optimality system and set mu = sigma · mu
when one of the following global or local convergence criteria is satisfied

1. log(norm gradtyp)− log(‖gradstep(x, y, z)‖) < log(mu typ)− log(mu est)

2. ‖gradstep(x, y, z)‖ < eps grad · norm gradtyp

3. log(norm gradtyp)− log(‖gradstop(x, y, z)‖) < log(mu typ)− log(mu est)

4. ‖gradstop(x, y, z)‖ < eps grad · norm gradtyp

where

gradstop(x, y, z) =

{
∇f(x)− h′(x)∗z Inequality constrained,
∇f(x) + g′(x)∗y − h′(x)∗z Constrained.

gradstep(x, y, z) =

{
∇f(x)− µh′(x)∗L(h(x))−1e Inequality constrained,
∇f(x) +W (∇2f(x)dx n) + g′(x)∗y − µh′(x)∗L(h(x))−1e Constrained.

and W denotes the projection onto nullspace of g′(x). Next, we must satisfy one of
the following global or local convergence criteria

1. log(norm gxtyp)− log(‖g(x)‖) < log(mu typ)− log(mu est)

2. ‖g(x)‖ < eps constr · norm gxtyp

In addition, we must converge mu est locally

|mu− mu est| < mu
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and not have converged mu globally

|mu− eps mu · mu typ| ≥ eps mu · mu typ.

Finally, we also require that iter > 1, so that we don’t reduce mu on the first iteration.
For globalization, in both trust-region and line-search methods, we modify our merit
function with the addition of a barrier function, which we refer to as barr. Specifically,
we allow any barrier function such that x ◦ ∇barr(x) = e. In our Rm and SQL vector
spaces, we use the log-barrier functions:

Linear 〈log(x), e〉,
Quadratic 1

2 log(x20 − 〈x̄, x̄〉),
Semidefinite log(det(x)).

where 〈·, ·〉 refers to the `2 inner product. In order to compute the semidefinite barrier
function, we Choleski factor x into uTu since

log(det(x)) = log(det(uTu)) = log(det(uT ) det(u)) = log(det(u)2) = 2 log(det(u))

and the determinant of an upper triangular matrix can be calculated quickly. As our
final step, since we don’t require our Jordan product to be commutative, we forcibly
symmetrize both δx and δz using the symm operator in our vector space. As far as the
initial inequality multiplier, we set

z = mu · L(h(x))−1e.

This guarantees that

1. h(x) ◦ z = mu · e
2. mu est = mu

In other words, our initial inequality multiplier puts us on the central path specified by
the parameter mu. Historically, we are not the first to use Euclidean-Jordan algebras
in an interior point algorithm. Alizadeh and Schmieta describe their use for semidefi-
nite programming and Alizadeh and Goldfarb describe their use in second-order cone
programming. Nevertheless, we drop the commutativity requirement in our algorithm.
Part of the reason we drop the commutativity requirement is that in the SDP case we
essentially generate the same optimality conditions as equation (4.10) in Helmberg,
Rendl, Vanderbei, and Wolkowicz’s SDP paper. In fact, our symmetrization in the
SQL vector space is identical to equation (4.30) in the same paper, which later became
known as the HKM search direction. Beyond the HKM symmetrization, we allow any
similar symmetrization operator, which Zhang describes in his paper.

• Farid Alizadeh and Stefan Schmieta. Symmetric cones, potential reduction meth-
ods and word-by-word extensions. In Henry Wolkowicz, Romesh Saigal, and
Lieven Vandenberghe, editors, Handbook of Semidefinite Programming, volume 27
of International Series in Operations Research & Management Science, pages
195–233. Springer US, 2000.

• F. Alizadeh and D. Goldfarb. Second-order cone programming. Mathematical
Programming, 95(1):3–51, 2003.

• Christoph Helmberg, Franz Rendl, Robert J. Vanderbei, and Henry Wolkowicz.
An interior-point method for semidefinite programming. SIAM Journal on Opti-
mization, 6(2):342–361, 1996.

• Yin Zhang. On extending some primal-dual interior-point algorithms from lin-
ear programming to semidefinite programming. SIAM Journal on Optimization,
8(2):365–386, 1998.

• Richard H. Byrd, Mary E. Hribar, and Jorge Nocedal. An interior point algorithm
for large-scale nonlinear programming. SIAM Journal on Optimization, 9(4):877–
900, 1999.
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Algorithm Inexact composite-step SQP

Description We implement a modified version of inexact composite-step SQP method that Ridzal
devised in his Ph.D. thesis and later refined in a technical report by Ridzal, Aguiló,
and Heinkenschloss. Our implementation adds several safe-guards in order to more
directly account for round-off error within the algorithm, which generally affects the
augmented system solves. As one example, when solving the augmented system for the
quasi-normal step, if the Cauchy point brings us to optimality, GMRES may not be
able to practically satisfy the tolerances the algorithm specifies. Therefore, we detect
this case directly and terminate the augmented system solve.

• Denis Ridzal. Trust-Region SQP Methods with Inexact Linear System Solves for
Large-Scale Optimization. PhD thesis, Rice University, 2006.

• Denis Ridzal, Miguel Aguiló, and Matthias Heinkenschloss. Numerical study
of matrix-free trust-region SQP method for equality constrained optimization.
Technical Report SAND2011-9346, Sandia National Laboratories, 2011.

• Matthias Heinkenschloss and Denis Ridzal. A matrix-free trust-region sqp method
for equality constrained optimization. SIAM Journal on Optimization, 24(3):1507–
1541, 2014.
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9
Licenses

In the following chapter, we detail Optizelle’s license as well as the license of all of its dependencies.

9.1 Optizelle

BSD 2-Clause License

Copyright 2013-2016 OptimoJoe.

Copyright 2012-2013 Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000

with Sandia Corporation, the U.S. Government retains certain rights in this software.

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are

permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of

conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of

conditions and the following disclaimer in the documentation and/or other materials

provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY

EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE

COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,

EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF

SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR

TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

9.2 JsonCpp

The JsonCpp library’s source code, including accompanying documentation,

tests and demonstration applications, are licensed under the following

conditions...

The author (Baptiste Lepilleur) explicitly disclaims copyright in all

jurisdictions which recognize such a disclaimer. In such jurisdictions,

this software is released into the Public Domain.

In jurisdictions which do not recognize Public Domain property (e.g. Germany as of

2010), this software is Copyright (c) 2007-2010 by Baptiste Lepilleur, and is

released under the terms of the MIT License (see below).
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In jurisdictions which recognize Public Domain property, the user of this

software may choose to accept it either as 1) Public Domain, 2) under the

conditions of the MIT License (see below), or 3) under the terms of dual

Public Domain/MIT License conditions described here, as they choose.

The MIT License is about as close to Public Domain as a license can get, and is

described in clear, concise terms at:

http://en.wikipedia.org/wiki/MIT_License

The full text of the MIT License follows:

========================================================================

Copyright (c) 2007-2010 Baptiste Lepilleur

Permission is hereby granted, free of charge, to any person

obtaining a copy of this software and associated documentation

files (the "Software"), to deal in the Software without

restriction, including without limitation the rights to use, copy,

modify, merge, publish, distribute, sublicense, and/or sell copies

of the Software, and to permit persons to whom the Software is

furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be

included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS

BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN

ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN

CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE

SOFTWARE.

========================================================================

(END LICENSE TEXT)

The MIT license is compatible with both the GPL and commercial

software, affording one all of the rights of Public Domain with the

minor nuisance of being required to keep the above copyright notice

and license text in the source code. Note also that by accepting the

Public Domain "license" you can re-license your copy using whatever

license you like.

9.3 BLAS/LAPACK

Copyright (c) 1992-2011 The University of Tennessee and The University

of Tennessee Research Foundation. All rights

reserved.

Copyright (c) 2000-2011 The University of California Berkeley. All

rights reserved.

Copyright (c) 2006-2012 The University of Colorado Denver. All rights

reserved.

$COPYRIGHT$
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Additional copyrights may follow

$HEADER$

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions are

met:

- Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

- Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer listed

in this license in the documentation and/or other materials

provided with the distribution.

- Neither the name of the copyright holders nor the names of its

contributors may be used to endorse or promote products derived from

this software without specific prior written permission.

The copyright holders provide no reassurances that the source code

provided does not infringe any patent, copyright, or any other

intellectual property rights of third parties. The copyright holders

disclaim any liability to any recipient for claims brought against

recipient by any third party for infringement of that parties

intellectual property rights.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT

OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY

THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

9.4 CMake

CMake - Cross Platform Makefile Generator

Copyright 2000-2016 Kitware, Inc.

Copyright 2000-2011 Insight Software Consortium

All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

* Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.
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* Neither the names of Kitware, Inc., the Insight Software Consortium,

nor the names of their contributors may be used to endorse or promote

products derived from this software without specific prior written

permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT

HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY

THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

------------------------------------------------------------------------------

The above copyright and license notice applies to distributions of

CMake in source and binary form. Some source files contain additional

notices of original copyright by their contributors; see each source

for details. Third-party software packages supplied with CMake under

compatible licenses provide their own copyright notices documented in

corresponding subdirectories.

------------------------------------------------------------------------------

CMake was initially developed by Kitware with the following sponsorship:

* National Library of Medicine at the National Institutes of Health

as part of the Insight Segmentation and Registration Toolkit (ITK).

* US National Labs (Los Alamos, Livermore, Sandia) ASC Parallel

Visualization Initiative.

* National Alliance for Medical Image Computing (NAMIC) is funded by the

National Institutes of Health through the NIH Roadmap for Medical Research,

Grant U54 EB005149.

* Kitware, Inc.

9.5 WiX

Copyright (c) 2004, Outercurve Foundation. This software is released under the Microsoft

Reciprocal License (MS-RL) (the "License"); you may not use the software except in

compliance with the License.

The text of the Microsoft Reciprocal License (MS-RL) can be found online at:

http://opensource.org/licenses/ms-rl

Microsoft Reciprocal License (MS-RL)

This license governs use of the accompanying software. If you use the software, you

accept this license. If you do not accept the license, do not use the software.

1. Definitions The terms "reproduce," "reproduction," "derivative works," and

"distribution" have the same meaning here as under U.S. copyright law. A "contribution"

is the original software, or any additions or changes to the software. A "contributor" is
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any person that distributes its contribution under this license. "Licensed patents" are a

contributor’s patent claims that read directly on its contribution.

2. Grant of Rights (A) Copyright Grant- Subject to the terms of this license, including

the license conditions and limitations in section 3, each contributor grants you a

non-exclusive, worldwide, royalty-free copyright license to reproduce its contribution,

prepare derivative works of its contribution, and distribute its contribution or any

derivative works that you create. (B) Patent Grant- Subject to the terms of this license,

including the license conditions and limitations in section 3, each contributor grants you

a non-exclusive, worldwide, royalty-free license under its licensed patents to make, have

made, use, sell, offer for sale, import, and/or otherwise dispose of its contribution in

the software or derivative works of the contribution in the software.

3. Conditions and Limitations (A) Reciprocal Grants- For any file you distribute that

contains code from the software (in source code or binary format), you must provide

recipients the source code to that file along with a copy of this license, which license

will govern that file. You may license other files that are entirely your own work and do

not contain code from the software under any terms you choose. (B) No Trademark License-

This license does not grant you rights to use any contributors’ name, logo, or trademarks.

(C) If you bring a patent claim against any contributor over patents that you claim are

infringed by the software, your patent license from such contributor to the software ends

automatically. (D) If you distribute any portion of the software, you must retain all

copyright, patent, trademark, and attribution notices that are present in the software.

(E) If you distribute any portion of the software in source code form, you may do so only

under this license by including a complete copy of this license with your distribution.

If you distribute any portion of the software in compiled or object code form, you may

only do so under a license that complies with this license. (F) The software is licensed

"as-is." You bear the risk of using it. The contributors give no express warranties,

guarantees or conditions. You may have additional consumer rights under your local laws

which this license cannot change. To the extent permitted under your local laws, the

contributors exclude the implied warranties of merchantability, fitness for a particular

purpose and non-infringement.

9.6 GCC

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.

51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies

of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your

freedom to share and change it. By contrast, the GNU General Public

License is intended to guarantee your freedom to share and change free

software--to make sure the software is free for all its users. This

General Public License applies to most of the Free Software

Foundation’s software and to any other program whose authors commit to

using it. (Some other Free Software Foundation software is covered by

the GNU Library General Public License instead.) You can apply it to

your programs, too.

When we speak of free software, we are referring to freedom, not

price. Our General Public Licenses are designed to make sure that you

have the freedom to distribute copies of free software (and charge for
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this service if you wish), that you receive source code or can get it

if you want it, that you can change the software or use pieces of it

in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid

anyone to deny you these rights or to ask you to surrender the rights.

These restrictions translate to certain responsibilities for you if you

distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether

gratis or for a fee, you must give the recipients all the rights that

you have. You must make sure that they, too, receive or can get the

source code. And you must show them these terms so they know their

rights.

We protect your rights with two steps: (1) copyright the software, and

(2) offer you this license which gives you legal permission to copy,

distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain

that everyone understands that there is no warranty for this free

software. If the software is modified by someone else and passed on, we

want its recipients to know that what they have is not the original, so

that any problems introduced by others will not reflect on the original

authors’ reputations.

Finally, any free program is threatened constantly by software

patents. We wish to avoid the danger that redistributors of a free

program will individually obtain patent licenses, in effect making the

program proprietary. To prevent this, we have made it clear that any

patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and

modification follow.

GNU GENERAL PUBLIC LICENSE

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains

a notice placed by the copyright holder saying it may be distributed

under the terms of this General Public License. The "Program", below,

refers to any such program or work, and a "work based on the Program"

means either the Program or any derivative work under copyright law:

that is to say, a work containing the Program or a portion of it,

either verbatim or with modifications and/or translated into another

language. (Hereinafter, translation is included without limitation in

the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not

covered by this License; they are outside its scope. The act of

running the Program is not restricted, and the output from the Program

is covered only if its contents constitute a work based on the

Program (independent of having been made by running the Program).

Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s

source code as you receive it, in any medium, provided that you
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conspicuously and appropriately publish on each copy an appropriate

copyright notice and disclaimer of warranty; keep intact all the

notices that refer to this License and to the absence of any warranty;

and give any other recipients of the Program a copy of this License

along with the Program.

You may charge a fee for the physical act of transferring a copy, and

you may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion

of it, thus forming a work based on the Program, and copy and

distribute such modifications or work under the terms of Section 1

above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices

stating that you changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in

whole or in part contains or is derived from the Program or any

part thereof, to be licensed as a whole at no charge to all third

parties under the terms of this License.

c) If the modified program normally reads commands interactively

when run, you must cause it, when started running for such

interactive use in the most ordinary way, to print or display an

announcement including an appropriate copyright notice and a

notice that there is no warranty (or else, saying that you provide

a warranty) and that users may redistribute the program under

these conditions, and telling the user how to view a copy of this

License. (Exception: if the Program itself is interactive but

does not normally print such an announcement, your work based on

the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If

identifiable sections of that work are not derived from the Program,

and can be reasonably considered independent and separate works in

themselves, then this License, and its terms, do not apply to those

sections when you distribute them as separate works. But when you

distribute the same sections as part of a whole which is a work based

on the Program, the distribution of the whole must be on the terms of

this License, whose permissions for other licensees extend to the

entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest

your rights to work written entirely by you; rather, the intent is to

exercise the right to control the distribution of derivative or

collective works based on the Program.

In addition, mere aggregation of another work not based on the Program

with the Program (or with a work based on the Program) on a volume of

a storage or distribution medium does not bring the other work under

the scope of this License.

3. You may copy and distribute the Program (or a work based on it,

under Section 2) in object code or executable form under the terms of

Sections 1 and 2 above provided that you also do one of the following:
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a) Accompany it with the complete corresponding machine-readable

source code, which must be distributed under the terms of Sections

1 and 2 above on a medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three

years, to give any third party, for a charge no more than your

cost of physically performing source distribution, a complete

machine-readable copy of the corresponding source code, to be

distributed under the terms of Sections 1 and 2 above on a medium

customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer

to distribute corresponding source code. (This alternative is

allowed only for noncommercial distribution and only if you

received the program in object code or executable form with such

an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for

making modifications to it. For an executable work, complete source

code means all the source code for all modules it contains, plus any

associated interface definition files, plus the scripts used to

control compilation and installation of the executable. However, as a

special exception, the source code distributed need not include

anything that is normally distributed (in either source or binary

form) with the major components (compiler, kernel, and so on) of the

operating system on which the executable runs, unless that component

itself accompanies the executable.

If distribution of executable or object code is made by offering

access to copy from a designated place, then offering equivalent

access to copy the source code from the same place counts as

distribution of the source code, even though third parties are not

compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program

except as expressly provided under this License. Any attempt

otherwise to copy, modify, sublicense or distribute the Program is

void, and will automatically terminate your rights under this License.

However, parties who have received copies, or rights, from you under

this License will not have their licenses terminated so long as such

parties remain in full compliance.

5. You are not required to accept this License, since you have not

signed it. However, nothing else grants you permission to modify or

distribute the Program or its derivative works. These actions are

prohibited by law if you do not accept this License. Therefore, by

modifying or distributing the Program (or any work based on the

Program), you indicate your acceptance of this License to do so, and

all its terms and conditions for copying, distributing or modifying

the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the

Program), the recipient automatically receives a license from the

original licensor to copy, distribute or modify the Program subject to

these terms and conditions. You may not impose any further

restrictions on the recipients’ exercise of the rights granted herein.

You are not responsible for enforcing compliance by third parties to

230



this License.

7. If, as a consequence of a court judgment or allegation of patent

infringement or for any other reason (not limited to patent issues),

conditions are imposed on you (whether by court order, agreement or

otherwise) that contradict the conditions of this License, they do not

excuse you from the conditions of this License. If you cannot

distribute so as to satisfy simultaneously your obligations under this

License and any other pertinent obligations, then as a consequence you

may not distribute the Program at all. For example, if a patent

license would not permit royalty-free redistribution of the Program by

all those who receive copies directly or indirectly through you, then

the only way you could satisfy both it and this License would be to

refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under

any particular circumstance, the balance of the section is intended to

apply and the section as a whole is intended to apply in other

circumstances.

It is not the purpose of this section to induce you to infringe any

patents or other property right claims or to contest validity of any

such claims; this section has the sole purpose of protecting the

integrity of the free software distribution system, which is

implemented by public license practices. Many people have made

generous contributions to the wide range of software distributed

through that system in reliance on consistent application of that

system; it is up to the author/donor to decide if he or she is willing

to distribute software through any other system and a licensee cannot

impose that choice.

This section is intended to make thoroughly clear what is believed to

be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in

certain countries either by patents or by copyrighted interfaces, the

original copyright holder who places the Program under this License

may add an explicit geographical distribution limitation excluding

those countries, so that distribution is permitted only in or among

countries not thus excluded. In such case, this License incorporates

the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions

of the General Public License from time to time. Such new versions will

be similar in spirit to the present version, but may differ in detail to

address new problems or concerns.

Each version is given a distinguishing version number. If the Program

specifies a version number of this License which applies to it and "any

later version", you have the option of following the terms and conditions

either of that version or of any later version published by the Free

Software Foundation. If the Program does not specify a version number of

this License, you may choose any version ever published by the Free Software

Foundation.

10. If you wish to incorporate parts of the Program into other free

programs whose distribution conditions are different, write to the author
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to ask for permission. For software which is copyrighted by the Free

Software Foundation, write to the Free Software Foundation; we sometimes

make exceptions for this. Our decision will be guided by the two goals

of preserving the free status of all derivatives of our free software and

of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY

FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN

OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES

PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS

TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE

PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,

REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING

WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR

REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,

INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING

OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED

TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY

YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER

PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE

POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest

possible use to the public, the best way to achieve this is to make it

free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest

to attach them to the start of each source file to most effectively

convey the exclusion of warranty; and each file should have at least

the "copyright" line and a pointer to where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.>

Copyright (C) <year> <name of author>

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 2 of the License, or

(at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software

Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

232



Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this

when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.

This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate

parts of the General Public License. Of course, the commands you use may

be called something other than ‘show w’ and ‘show c’; they could even be

mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your

school, if any, to sign a "copyright disclaimer" for the program, if

necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program

‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989

Ty Coon, President of Vice

This General Public License does not permit incorporating your program into

proprietary programs. If your program is a subroutine library, you may

consider it more useful to permit linking proprietary applications with the

library. If this is what you want to do, use the GNU Library General

Public License instead of this License.

GCC RUNTIME LIBRARY EXCEPTION

Version 3.1, 31 March 2009

Copyright (C) 2009 Free Software Foundation, Inc. <http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this

license document, but changing it is not allowed.

This GCC Runtime Library Exception ("Exception") is an additional

permission under section 7 of the GNU General Public License, version

3 ("GPLv3"). It applies to a given file (the "Runtime Library") that

bears a notice placed by the copyright holder of the file stating that

the file is governed by GPLv3 along with this Exception.

When you use GCC to compile a program, GCC may combine portions of

certain GCC header files and runtime libraries with the compiled

program. The purpose of this Exception is to allow compilation of

non-GPL (including proprietary) programs to use, in this way, the

header files and runtime libraries covered by this Exception.

0. Definitions.

A file is an "Independent Module" if it either requires the Runtime
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Library for execution after a Compilation Process, or makes use of an

interface provided by the Runtime Library, but is not otherwise based

on the Runtime Library.

"GCC" means a version of the GNU Compiler Collection, with or without

modifications, governed by version 3 (or a specified later version) of

the GNU General Public License (GPL) with the option of using any

subsequent versions published by the FSF.

"GPL-compatible Software" is software whose conditions of propagation,

modification and use would permit combination with GCC in accord with

the license of GCC.

"Target Code" refers to output from any compiler for a real or virtual

target processor architecture, in executable form or suitable for

input to an assembler, loader, linker and/or execution

phase. Notwithstanding that, Target Code does not include data in any

format that is used as a compiler intermediate representation, or used

for producing a compiler intermediate representation.

The "Compilation Process" transforms code entirely represented in

non-intermediate languages designed for human-written code, and/or in

Java Virtual Machine byte code, into Target Code. Thus, for example,

use of source code generators and preprocessors need not be considered

part of the Compilation Process, since the Compilation Process can be

understood as starting with the output of the generators or

preprocessors.

A Compilation Process is "Eligible" if it is done using GCC, alone or

with other GPL-compatible software, or if it is done without using any

work based on GCC. For example, using non-GPL-compatible Software to

optimize any GCC intermediate representations would not qualify as an

Eligible Compilation Process.

1. Grant of Additional Permission.

You have permission to propagate a work of Target Code formed by

combining the Runtime Library with Independent Modules, even if such

propagation would otherwise violate the terms of GPLv3, provided that

all Target Code was generated by Eligible Compilation Processes. You

may then convey such a combination under terms of your choice,

consistent with the licensing of the Independent Modules.

2. No Weakening of GCC Copyleft.

The availability of this Exception does not imply any general

presumption that third-party software is unaffected by the copyleft

requirements of the license of GCC.

9.7 TeX Live

$Id: LICENSE.TL 22793 2011-06-05 15:38:08Z karl $

COPYING CONDITIONS FOR TeX Live:
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To the best of our knowledge, all software in the TeX Live distribution

is freely redistributable (libre, that is, not necessarily gratis),

within the Free Software Foundation’s definition and the Debian Free

Software Guidelines. Where the two conflict, we generally follow the

FSF. If you find any non-free files included, please contact us

(references given at the end).

That said, TeX Live has neither a single copyright holder nor a single

license covering its entire contents, since it is a collection of many

independent packages. Therefore, you may copy, modify, and/or

redistribute software from TeX Live only if you comply with the

requirements placed thereon by the owners of the respective packages.

To most easily learn these requirements, we suggest checking the TeX

Catalogue at: http://www.ctan.org/tex-archive/help/Catalogue/ (or any

CTAN mirror). Of course the legal statements within the packages

themselves are the final authority.

In some cases, TeX Live is distributed with a snapshot of the CTAN

archive, which is entirely independent of and separable from TeX Live

itself. (The TeX Collection DVD is one example of this.) Please be

aware that the CTAN snapshot contains many files which are *not* freely

redistributable; see LICENSE.CTAN for more information.

GUIDELINES FOR REDISTRIBUTION:

In general, you may redistribute TeX Live, with or without modification,

for profit or not, according to the usual free software tenets. Here

are some general guidelines for doing this:

- If you make any changes to the TeX Live distribution or any

package it contains, besides complying with any licensing requirements,

you must prominently mention such changes in your modified distribution

so that users do not take your work for ours, and know to contact you,

not us, in case of questions or problems. A new top-level file

README.<yourwork> is a good place to describe the general situation.

- Especially (but not necessarily) if changes or additions are made, we

recommend a clearly different title, such as "<your work> DVD, based on

TeX Live YYYY", where YYYY is the year of TeX Live you are using. This

credits both our work and yours.

- You absolutely may *not* place your own copyright on the entire

distribution, since it is not your work. Statements such as "all rights

reserved" and "may not be reproduced" are especially reprehensible,

since they are antithetical to the free software principles under which

TeX Live is produced.

- You may use any cover or media label designs that you wish. Such

packaging and marketing details are not covered by any TeX Live license.

- Finally, we make the following requests (not legal requirements):

a) Acknowledging that TeX Live is developed as a joint effort by all TeX

user groups, and encouraging the user/reader to join their user group

of choice, as listed on the web page http://tug.org/usergroups.html.
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b) Referencing the TeX Live home page: http://tug.org/texlive/

Such information may be placed on the label of your media, your cover,

and/or in accompanying text (for instance, in the acknowledgements

section of a book).

Finally, although it is again not a requirement, we’d like to invite any

redistributors to make a donation to the project, whether cash or

in-kind, for example via https://www.tug.org/donate/dev.html. Thanks.

If you have any questions or comments, *please* contact us. In general,

we appreciate being given the chance to review any TeX Live-related

material in advance of publication, simply to avoid mistakes. It is

much better to correct text on a CD label or in a book before thousands

of copies are made!

We are also happy to keep anyone planning a publication informed as to

our deadlines and progress. Just let us know. However, be aware that

TeX Live is produced entirely by volunteers, and no dates can be

guaranteed.

LICENSING FOR NEW PACKAGES:

Finally, we are often asked what license to use for new work. To be

considered for inclusion on TeX Live, a package must use a free software

license, such as the LaTeX Project Public License, the GNU General

Public License, the modified BSD license, etc. (Please use an existing

license instead of making up your own.) Furthermore, all sources must

be available, including for documentation files. Please see

http://tug.org/texlive/pkgcontrib.html for more information, and other

considerations.

Thanks for your interest in TeX.

- Karl Berry, for the TeX Live project

------------------------------------------------------------

TeX Live mailing list: http://lists.tug.org/tex-live

TeX Live home page: http://tug.org/tex-live/

The FSF’s free software definition: http://www.gnu.org/philosophy/free-sw.html

Debian Free Software Guidelines: http://www.debian.org/intro/free

FSF commentary on existing licenses:

http://www.gnu.org/licenses/license-list.html

LPPL: http://latex-project.org/lppl.html or texmf-dist/doc/latex/base/lppl.txt

LPPL rationale: texmf-dist/doc/latex/base/modguide.pdf

9.8 Python

A. HISTORY OF THE SOFTWARE

==========================
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Python was created in the early 1990s by Guido van Rossum at Stichting

Mathematisch Centrum (CWI, see http://www.cwi.nl) in the Netherlands

as a successor of a language called ABC. Guido remains Python’s

principal author, although it includes many contributions from others.

In 1995, Guido continued his work on Python at the Corporation for

National Research Initiatives (CNRI, see http://www.cnri.reston.va.us)

in Reston, Virginia where he released several versions of the

software.

In May 2000, Guido and the Python core development team moved to

BeOpen.com to form the BeOpen PythonLabs team. In October of the same

year, the PythonLabs team moved to Digital Creations (now Zope

Corporation, see http://www.zope.com). In 2001, the Python Software

Foundation (PSF, see http://www.python.org/psf/) was formed, a

non-profit organization created specifically to own Python-related

Intellectual Property. Zope Corporation is a sponsoring member of

the PSF.

All Python releases are Open Source (see http://www.opensource.org for

the Open Source Definition). Historically, most, but not all, Python

releases have also been GPL-compatible; the table below summarizes

the various releases.

Release Derived Year Owner GPL-

from compatible? (1)

0.9.0 thru 1.2 1991-1995 CWI yes

1.3 thru 1.5.2 1.2 1995-1999 CNRI yes

1.6 1.5.2 2000 CNRI no

2.0 1.6 2000 BeOpen.com no

1.6.1 1.6 2001 CNRI yes (2)

2.1 2.0+1.6.1 2001 PSF no

2.0.1 2.0+1.6.1 2001 PSF yes

2.1.1 2.1+2.0.1 2001 PSF yes

2.2 2.1.1 2001 PSF yes

2.1.2 2.1.1 2002 PSF yes

2.1.3 2.1.2 2002 PSF yes

2.2.1 2.2 2002 PSF yes

2.2.2 2.2.1 2002 PSF yes

2.2.3 2.2.2 2003 PSF yes

2.3 2.2.2 2002-2003 PSF yes

2.3.1 2.3 2002-2003 PSF yes

2.3.2 2.3.1 2002-2003 PSF yes

2.3.3 2.3.2 2002-2003 PSF yes

2.3.4 2.3.3 2004 PSF yes

2.3.5 2.3.4 2005 PSF yes

2.4 2.3 2004 PSF yes

2.4.1 2.4 2005 PSF yes

2.4.2 2.4.1 2005 PSF yes

2.4.3 2.4.2 2006 PSF yes

2.4.4 2.4.3 2006 PSF yes

2.5 2.4 2006 PSF yes

2.5.1 2.5 2007 PSF yes

2.5.2 2.5.1 2008 PSF yes

2.5.3 2.5.2 2008 PSF yes

2.6 2.5 2008 PSF yes

237



2.6.1 2.6 2008 PSF yes

2.6.2 2.6.1 2009 PSF yes

2.6.3 2.6.2 2009 PSF yes

2.6.4 2.6.3 2009 PSF yes

2.6.5 2.6.4 2010 PSF yes

2.7 2.6 2010 PSF yes

Footnotes:

(1) GPL-compatible doesn’t mean that we’re distributing Python under

the GPL. All Python licenses, unlike the GPL, let you distribute

a modified version without making your changes open source. The

GPL-compatible licenses make it possible to combine Python with

other software that is released under the GPL; the others don’t.

(2) According to Richard Stallman, 1.6.1 is not GPL-compatible,

because its license has a choice of law clause. According to

CNRI, however, Stallman’s lawyer has told CNRI’s lawyer that 1.6.1

is "not incompatible" with the GPL.

Thanks to the many outside volunteers who have worked under Guido’s

direction to make these releases possible.

B. TERMS AND CONDITIONS FOR ACCESSING OR OTHERWISE USING PYTHON

===============================================================

PYTHON SOFTWARE FOUNDATION LICENSE VERSION 2

--------------------------------------------

1. This LICENSE AGREEMENT is between the Python Software Foundation

("PSF"), and the Individual or Organization ("Licensee") accessing and

otherwise using this software ("Python") in source or binary form and

its associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby

grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,

analyze, test, perform and/or display publicly, prepare derivative works,

distribute, and otherwise use Python alone or in any derivative version,

provided, however, that PSF’s License Agreement and PSF’s notice of copyright,

i.e., "Copyright (c) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010

Python Software Foundation; All Rights Reserved" are retained in Python alone or

in any derivative version prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on

or incorporates Python or any part thereof, and wants to make

the derivative work available to others as provided herein, then

Licensee hereby agrees to include in any such work a brief summary of

the changes made to Python.

4. PSF is making Python available to Licensee on an "AS IS"

basis. PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR

IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND

DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABILITY OR FITNESS

FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON WILL NOT

INFRINGE ANY THIRD PARTY RIGHTS.
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5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON

FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS

A RESULT OF MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON,

OR ANY DERIVATIVE THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material

breach of its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any

relationship of agency, partnership, or joint venture between PSF and

Licensee. This License Agreement does not grant permission to use PSF

trademarks or trade name in a trademark sense to endorse or promote

products or services of Licensee, or any third party.

8. By copying, installing or otherwise using Python, Licensee

agrees to be bound by the terms and conditions of this License

Agreement.

BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0

-------------------------------------------

BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an

office at 160 Saratoga Avenue, Santa Clara, CA 95051, and the

Individual or Organization ("Licensee") accessing and otherwise using

this software in source or binary form and its associated

documentation ("the Software").

2. Subject to the terms and conditions of this BeOpen Python License

Agreement, BeOpen hereby grants Licensee a non-exclusive,

royalty-free, world-wide license to reproduce, analyze, test, perform

and/or display publicly, prepare derivative works, distribute, and

otherwise use the Software alone or in any derivative version,

provided, however, that the BeOpen Python License is retained in the

Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an "AS IS"

basis. BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR

IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND

DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABILITY OR FITNESS

FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFTWARE WILL NOT

INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE

SOFTWARE FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS

AS A RESULT OF USING, MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY

DERIVATIVE THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material

breach of its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all

respects by the law of the State of California, excluding conflict of

law provisions. Nothing in this License Agreement shall be deemed to

create any relationship of agency, partnership, or joint venture
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between BeOpen and Licensee. This License Agreement does not grant

permission to use BeOpen trademarks or trade names in a trademark

sense to endorse or promote products or services of Licensee, or any

third party. As an exception, the "BeOpen Python" logos available at

http://www.pythonlabs.com/logos.html may be used according to the

permissions granted on that web page.

7. By copying, installing or otherwise using the software, Licensee

agrees to be bound by the terms and conditions of this License

Agreement.

CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

---------------------------------------

1. This LICENSE AGREEMENT is between the Corporation for National

Research Initiatives, having an office at 1895 Preston White Drive,

Reston, VA 20191 ("CNRI"), and the Individual or Organization

("Licensee") accessing and otherwise using Python 1.6.1 software in

source or binary form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI

hereby grants Licensee a nonexclusive, royalty-free, world-wide

license to reproduce, analyze, test, perform and/or display publicly,

prepare derivative works, distribute, and otherwise use Python 1.6.1

alone or in any derivative version, provided, however, that CNRI’s

License Agreement and CNRI’s notice of copyright, i.e., "Copyright (c)

1995-2001 Corporation for National Research Initiatives; All Rights

Reserved" are retained in Python 1.6.1 alone or in any derivative

version prepared by Licensee. Alternately, in lieu of CNRI’s License

Agreement, Licensee may substitute the following text (omitting the

quotes): "Python 1.6.1 is made available subject to the terms and

conditions in CNRI’s License Agreement. This Agreement together with

Python 1.6.1 may be located on the Internet using the following

unique, persistent identifier (known as a handle): 1895.22/1013. This

Agreement may also be obtained from a proxy server on the Internet

using the following URL: http://hdl.handle.net/1895.22/1013".

3. In the event Licensee prepares a derivative work that is based on

or incorporates Python 1.6.1 or any part thereof, and wants to make

the derivative work available to others as provided herein, then

Licensee hereby agrees to include in any such work a brief summary of

the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an "AS IS"

basis. CNRI MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR

IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION, CNRI MAKES NO AND

DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABILITY OR FITNESS

FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON 1.6.1 WILL NOT

INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON

1.6.1 FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS

A RESULT OF MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1,

OR ANY DERIVATIVE THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material
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breach of its terms and conditions.

7. This License Agreement shall be governed by the federal

intellectual property law of the United States, including without

limitation the federal copyright law, and, to the extent such

U.S. federal law does not apply, by the law of the Commonwealth of

Virginia, excluding Virginia’s conflict of law provisions.

Notwithstanding the foregoing, with regard to derivative works based

on Python 1.6.1 that incorporate non-separable material that was

previously distributed under the GNU General Public License (GPL), the

law of the Commonwealth of Virginia shall govern this License

Agreement only as to issues arising under or with respect to

Paragraphs 4, 5, and 7 of this License Agreement. Nothing in this

License Agreement shall be deemed to create any relationship of

agency, partnership, or joint venture between CNRI and Licensee. This

License Agreement does not grant permission to use CNRI trademarks or

trade name in a trademark sense to endorse or promote products or

services of Licensee, or any third party.

8. By clicking on the "ACCEPT" button where indicated, or by copying,

installing or otherwise using Python 1.6.1, Licensee agrees to be

bound by the terms and conditions of this License Agreement.

ACCEPT

CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2

--------------------------------------------------

Copyright (c) 1991 - 1995, Stichting Mathematisch Centrum Amsterdam,

The Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its

documentation for any purpose and without fee is hereby granted,

provided that the above copyright notice appear in all copies and that

both that copyright notice and this permission notice appear in

supporting documentation, and that the name of Stichting Mathematisch

Centrum or CWI not be used in advertising or publicity pertaining to

distribution of the software without specific, written prior

permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO

THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND

FITNESS, IN NO EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE

FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES

WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN

ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT

OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

9.9 NumPy

Copyright (c) 2005-2016, NumPy Developers.

All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions are
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met:

* Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above

copyright notice, this list of conditions and the following

disclaimer in the documentation and/or other materials provided

with the distribution.

* Neither the name of the NumPy Developers nor the names of any

contributors may be used to endorse or promote products derived

from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT

OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY

THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

9.10 MATLAB

Use of MATLAB is subject to the Mathworks, Inc. Software License Agreement,

which can be found in license_agreement.txt in the MATLAB installation.

Compilation and distribution of MATLAB code and MEX files are subject to the

Deployment Addendum in Software License Agreement. Specifically,

2. USER CREATED FILES. This Addendum does not apply to MATLAB code files,

Simulink model files, MEX-files, MAT-files, VHDL-files, Verilog-files,

FIG-files and P-files that are created by Licensee and that do not include any

code obtained from MATLAB code files, Simulink model files, MAT-files, P-code,

C/C++ files, VHDL-files, Verilog-files, TLC-files, or other Source Code files

supplied with the Programs ("User Files"). Licensee may distribute or

sublicense without restriction, User Files provided that a principal purpose of

the distribution or sublicense is not to replace or replicate a Program or any

part of a Program.

Optizelle does not include or distribute any Mathworks code or object files.

Optizelle only distributes its own MATLAB code and MEX files and hence may

distribute or sublicense itself without restriction.

9.11 JSONlab

Copyright 2011-2015 Qianqian Fang <fangq at nmr.mgh.harvard.edu>. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are

permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of

conditions and the following disclaimer.
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2. Redistributions in binary form must reproduce the above copyright notice, this list

of conditions and the following disclaimer in the documentation and/or other materials

provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ’’AS IS’’ AND ANY EXPRESS OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND

FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS

OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR

SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON

ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF

ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The views and conclusions contained in the software and documentation are those of the

authors and should not be interpreted as representing official policies, either expressed

or implied, of the copyright holders.

9.12 Octave

GNU GENERAL PUBLIC LICENSE

Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies

of this license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for

software and other kinds of works.

The licenses for most software and other practical works are designed

to take away your freedom to share and change the works. By contrast,

the GNU General Public License is intended to guarantee your freedom to

share and change all versions of a program--to make sure it remains free

software for all its users. We, the Free Software Foundation, use the

GNU General Public License for most of our software; it applies also to

any other work released this way by its authors. You can apply it to

your programs, too.

When we speak of free software, we are referring to freedom, not

price. Our General Public Licenses are designed to make sure that you

have the freedom to distribute copies of free software (and charge for

them if you wish), that you receive source code or can get it if you

want it, that you can change the software or use pieces of it in new

free programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying you

these rights or asking you to surrender the rights. Therefore, you have

certain responsibilities if you distribute copies of the software, or if

you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether

gratis or for a fee, you must pass on to the recipients the same
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freedoms that you received. You must make sure that they, too, receive

or can get the source code. And you must show them these terms so they

know their rights.

Developers that use the GNU GPL protect your rights with two steps:

(1) assert copyright on the software, and (2) offer you this License

giving you legal permission to copy, distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains

that there is no warranty for this free software. For both users’ and

authors’ sake, the GPL requires that modified versions be marked as

changed, so that their problems will not be attributed erroneously to

authors of previous versions.

Some devices are designed to deny users access to install or run

modified versions of the software inside them, although the manufacturer

can do so. This is fundamentally incompatible with the aim of

protecting users’ freedom to change the software. The systematic

pattern of such abuse occurs in the area of products for individuals to

use, which is precisely where it is most unacceptable. Therefore, we

have designed this version of the GPL to prohibit the practice for those

products. If such problems arise substantially in other domains, we

stand ready to extend this provision to those domains in future versions

of the GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents.

States should not allow patents to restrict development and use of

software on general-purpose computers, but in those that do, we wish to

avoid the special danger that patents applied to a free program could

make it effectively proprietary. To prevent this, the GPL assures that

patents cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and

modification follow.

TERMS AND CONDITIONS

0. Definitions.

"This License" refers to version 3 of the GNU General Public License.

"Copyright" also means copyright-like laws that apply to other kinds of

works, such as semiconductor masks.

"The Program" refers to any copyrightable work licensed under this

License. Each licensee is addressed as "you". "Licensees" and

"recipients" may be individuals or organizations.

To "modify" a work means to copy from or adapt all or part of the work

in a fashion requiring copyright permission, other than the making of an

exact copy. The resulting work is called a "modified version" of the

earlier work or a work "based on" the earlier work.

A "covered work" means either the unmodified Program or a work based

on the Program.

To "propagate" a work means to do anything with it that, without
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permission, would make you directly or secondarily liable for

infringement under applicable copyright law, except executing it on a

computer or modifying a private copy. Propagation includes copying,

distribution (with or without modification), making available to the

public, and in some countries other activities as well.

To "convey" a work means any kind of propagation that enables other

parties to make or receive copies. Mere interaction with a user through

a computer network, with no transfer of a copy, is not conveying.

An interactive user interface displays "Appropriate Legal Notices"

to the extent that it includes a convenient and prominently visible

feature that (1) displays an appropriate copyright notice, and (2)

tells the user that there is no warranty for the work (except to the

extent that warranties are provided), that licensees may convey the

work under this License, and how to view a copy of this License. If

the interface presents a list of user commands or options, such as a

menu, a prominent item in the list meets this criterion.

1. Source Code.

The "source code" for a work means the preferred form of the work

for making modifications to it. "Object code" means any non-source

form of a work.

A "Standard Interface" means an interface that either is an official

standard defined by a recognized standards body, or, in the case of

interfaces specified for a particular programming language, one that

is widely used among developers working in that language.

The "System Libraries" of an executable work include anything, other

than the work as a whole, that (a) is included in the normal form of

packaging a Major Component, but which is not part of that Major

Component, and (b) serves only to enable use of the work with that

Major Component, or to implement a Standard Interface for which an

implementation is available to the public in source code form. A

"Major Component", in this context, means a major essential component

(kernel, window system, and so on) of the specific operating system

(if any) on which the executable work runs, or a compiler used to

produce the work, or an object code interpreter used to run it.

The "Corresponding Source" for a work in object code form means all

the source code needed to generate, install, and (for an executable

work) run the object code and to modify the work, including scripts to

control those activities. However, it does not include the work’s

System Libraries, or general-purpose tools or generally available free

programs which are used unmodified in performing those activities but

which are not part of the work. For example, Corresponding Source

includes interface definition files associated with source files for

the work, and the source code for shared libraries and dynamically

linked subprograms that the work is specifically designed to require,

such as by intimate data communication or control flow between those

subprograms and other parts of the work.

The Corresponding Source need not include anything that users

can regenerate automatically from other parts of the Corresponding

Source.
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The Corresponding Source for a work in source code form is that

same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of

copyright on the Program, and are irrevocable provided the stated

conditions are met. This License explicitly affirms your unlimited

permission to run the unmodified Program. The output from running a

covered work is covered by this License only if the output, given its

content, constitutes a covered work. This License acknowledges your

rights of fair use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not

convey, without conditions so long as your license otherwise remains

in force. You may convey covered works to others for the sole purpose

of having them make modifications exclusively for you, or provide you

with facilities for running those works, provided that you comply with

the terms of this License in conveying all material for which you do

not control copyright. Those thus making or running the covered works

for you must do so exclusively on your behalf, under your direction

and control, on terms that prohibit them from making any copies of

your copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under

the conditions stated below. Sublicensing is not allowed; section 10

makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological

measure under any applicable law fulfilling obligations under article

11 of the WIPO copyright treaty adopted on 20 December 1996, or

similar laws prohibiting or restricting circumvention of such

measures.

When you convey a covered work, you waive any legal power to forbid

circumvention of technological measures to the extent such circumvention

is effected by exercising rights under this License with respect to

the covered work, and you disclaim any intention to limit operation or

modification of the work as a means of enforcing, against the work’s

users, your or third parties’ legal rights to forbid circumvention of

technological measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you

receive it, in any medium, provided that you conspicuously and

appropriately publish on each copy an appropriate copyright notice;

keep intact all notices stating that this License and any

non-permissive terms added in accord with section 7 apply to the code;

keep intact all notices of the absence of any warranty; and give all

recipients a copy of this License along with the Program.

You may charge any price or no price for each copy that you convey,

and you may offer support or warranty protection for a fee.
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5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to

produce it from the Program, in the form of source code under the

terms of section 4, provided that you also meet all of these conditions:

a) The work must carry prominent notices stating that you modified

it, and giving a relevant date.

b) The work must carry prominent notices stating that it is

released under this License and any conditions added under section

7. This requirement modifies the requirement in section 4 to

"keep intact all notices".

c) You must license the entire work, as a whole, under this

License to anyone who comes into possession of a copy. This

License will therefore apply, along with any applicable section 7

additional terms, to the whole of the work, and all its parts,

regardless of how they are packaged. This License gives no

permission to license the work in any other way, but it does not

invalidate such permission if you have separately received it.

d) If the work has interactive user interfaces, each must display

Appropriate Legal Notices; however, if the Program has interactive

interfaces that do not display Appropriate Legal Notices, your

work need not make them do so.

A compilation of a covered work with other separate and independent

works, which are not by their nature extensions of the covered work,

and which are not combined with it such as to form a larger program,

in or on a volume of a storage or distribution medium, is called an

"aggregate" if the compilation and its resulting copyright are not

used to limit the access or legal rights of the compilation’s users

beyond what the individual works permit. Inclusion of a covered work

in an aggregate does not cause this License to apply to the other

parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms

of sections 4 and 5, provided that you also convey the

machine-readable Corresponding Source under the terms of this License,

in one of these ways:

a) Convey the object code in, or embodied in, a physical product

(including a physical distribution medium), accompanied by the

Corresponding Source fixed on a durable physical medium

customarily used for software interchange.

b) Convey the object code in, or embodied in, a physical product

(including a physical distribution medium), accompanied by a

written offer, valid for at least three years and valid for as

long as you offer spare parts or customer support for that product

model, to give anyone who possesses the object code either (1) a

copy of the Corresponding Source for all the software in the

product that is covered by this License, on a durable physical
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medium customarily used for software interchange, for a price no

more than your reasonable cost of physically performing this

conveying of source, or (2) access to copy the

Corresponding Source from a network server at no charge.

c) Convey individual copies of the object code with a copy of the

written offer to provide the Corresponding Source. This

alternative is allowed only occasionally and noncommercially, and

only if you received the object code with such an offer, in accord

with subsection 6b.

d) Convey the object code by offering access from a designated

place (gratis or for a charge), and offer equivalent access to the

Corresponding Source in the same way through the same place at no

further charge. You need not require recipients to copy the

Corresponding Source along with the object code. If the place to

copy the object code is a network server, the Corresponding Source

may be on a different server (operated by you or a third party)

that supports equivalent copying facilities, provided you maintain

clear directions next to the object code saying where to find the

Corresponding Source. Regardless of what server hosts the

Corresponding Source, you remain obligated to ensure that it is

available for as long as needed to satisfy these requirements.

e) Convey the object code using peer-to-peer transmission, provided

you inform other peers where the object code and Corresponding

Source of the work are being offered to the general public at no

charge under subsection 6d.

A separable portion of the object code, whose source code is excluded

from the Corresponding Source as a System Library, need not be

included in conveying the object code work.

A "User Product" is either (1) a "consumer product", which means any

tangible personal property which is normally used for personal, family,

or household purposes, or (2) anything designed or sold for incorporation

into a dwelling. In determining whether a product is a consumer product,

doubtful cases shall be resolved in favor of coverage. For a particular

product received by a particular user, "normally used" refers to a

typical or common use of that class of product, regardless of the status

of the particular user or of the way in which the particular user

actually uses, or expects or is expected to use, the product. A product

is a consumer product regardless of whether the product has substantial

commercial, industrial or non-consumer uses, unless such uses represent

the only significant mode of use of the product.

"Installation Information" for a User Product means any methods,

procedures, authorization keys, or other information required to install

and execute modified versions of a covered work in that User Product from

a modified version of its Corresponding Source. The information must

suffice to ensure that the continued functioning of the modified object

code is in no case prevented or interfered with solely because

modification has been made.

If you convey an object code work under this section in, or with, or

specifically for use in, a User Product, and the conveying occurs as

part of a transaction in which the right of possession and use of the
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User Product is transferred to the recipient in perpetuity or for a

fixed term (regardless of how the transaction is characterized), the

Corresponding Source conveyed under this section must be accompanied

by the Installation Information. But this requirement does not apply

if neither you nor any third party retains the ability to install

modified object code on the User Product (for example, the work has

been installed in ROM).

The requirement to provide Installation Information does not include a

requirement to continue to provide support service, warranty, or updates

for a work that has been modified or installed by the recipient, or for

the User Product in which it has been modified or installed. Access to a

network may be denied when the modification itself materially and

adversely affects the operation of the network or violates the rules and

protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided,

in accord with this section must be in a format that is publicly

documented (and with an implementation available to the public in

source code form), and must require no special password or key for

unpacking, reading or copying.

7. Additional Terms.

"Additional permissions" are terms that supplement the terms of this

License by making exceptions from one or more of its conditions.

Additional permissions that are applicable to the entire Program shall

be treated as though they were included in this License, to the extent

that they are valid under applicable law. If additional permissions

apply only to part of the Program, that part may be used separately

under those permissions, but the entire Program remains governed by

this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option

remove any additional permissions from that copy, or from any part of

it. (Additional permissions may be written to require their own

removal in certain cases when you modify the work.) You may place

additional permissions on material, added by you to a covered work,

for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you

add to a covered work, you may (if authorized by the copyright holders of

that material) supplement the terms of this License with terms:

a) Disclaiming warranty or limiting liability differently from the

terms of sections 15 and 16 of this License; or

b) Requiring preservation of specified reasonable legal notices or

author attributions in that material or in the Appropriate Legal

Notices displayed by works containing it; or

c) Prohibiting misrepresentation of the origin of that material, or

requiring that modified versions of such material be marked in

reasonable ways as different from the original version; or

d) Limiting the use for publicity purposes of names of licensors or

authors of the material; or
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e) Declining to grant rights under trademark law for use of some

trade names, trademarks, or service marks; or

f) Requiring indemnification of licensors and authors of that

material by anyone who conveys the material (or modified versions of

it) with contractual assumptions of liability to the recipient, for

any liability that these contractual assumptions directly impose on

those licensors and authors.

All other non-permissive additional terms are considered "further

restrictions" within the meaning of section 10. If the Program as you

received it, or any part of it, contains a notice stating that it is

governed by this License along with a term that is a further

restriction, you may remove that term. If a license document contains

a further restriction but permits relicensing or conveying under this

License, you may add to a covered work material governed by the terms

of that license document, provided that the further restriction does

not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you

must place, in the relevant source files, a statement of the

additional terms that apply to those files, or a notice indicating

where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the

form of a separately written license, or stated as exceptions;

the above requirements apply either way.

8. Termination.

You may not propagate or modify a covered work except as expressly

provided under this License. Any attempt otherwise to propagate or

modify it is void, and will automatically terminate your rights under

this License (including any patent licenses granted under the third

paragraph of section 11).

However, if you cease all violation of this License, then your

license from a particular copyright holder is reinstated (a)

provisionally, unless and until the copyright holder explicitly and

finally terminates your license, and (b) permanently, if the copyright

holder fails to notify you of the violation by some reasonable means

prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is

reinstated permanently if the copyright holder notifies you of the

violation by some reasonable means, this is the first time you have

received notice of violation of this License (for any work) from that

copyright holder, and you cure the violation prior to 30 days after

your receipt of the notice.

Termination of your rights under this section does not terminate the

licenses of parties who have received copies or rights from you under

this License. If your rights have been terminated and not permanently

reinstated, you do not qualify to receive new licenses for the same

material under section 10.
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9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or

run a copy of the Program. Ancillary propagation of a covered work

occurring solely as a consequence of using peer-to-peer transmission

to receive a copy likewise does not require acceptance. However,

nothing other than this License grants you permission to propagate or

modify any covered work. These actions infringe copyright if you do

not accept this License. Therefore, by modifying or propagating a

covered work, you indicate your acceptance of this License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically

receives a license from the original licensors, to run, modify and

propagate that work, subject to this License. You are not responsible

for enforcing compliance by third parties with this License.

An "entity transaction" is a transaction transferring control of an

organization, or substantially all assets of one, or subdividing an

organization, or merging organizations. If propagation of a covered

work results from an entity transaction, each party to that

transaction who receives a copy of the work also receives whatever

licenses to the work the party’s predecessor in interest had or could

give under the previous paragraph, plus a right to possession of the

Corresponding Source of the work from the predecessor in interest, if

the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the

rights granted or affirmed under this License. For example, you may

not impose a license fee, royalty, or other charge for exercise of

rights granted under this License, and you may not initiate litigation

(including a cross-claim or counterclaim in a lawsuit) alleging that

any patent claim is infringed by making, using, selling, offering for

sale, or importing the Program or any portion of it.

11. Patents.

A "contributor" is a copyright holder who authorizes use under this

License of the Program or a work on which the Program is based. The

work thus licensed is called the contributor’s "contributor version".

A contributor’s "essential patent claims" are all patent claims

owned or controlled by the contributor, whether already acquired or

hereafter acquired, that would be infringed by some manner, permitted

by this License, of making, using, or selling its contributor version,

but do not include claims that would be infringed only as a

consequence of further modification of the contributor version. For

purposes of this definition, "control" includes the right to grant

patent sublicenses in a manner consistent with the requirements of

this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free

patent license under the contributor’s essential patent claims, to

make, use, sell, offer for sale, import and otherwise run, modify and

propagate the contents of its contributor version.
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In the following three paragraphs, a "patent license" is any express

agreement or commitment, however denominated, not to enforce a patent

(such as an express permission to practice a patent or covenant not to

sue for patent infringement). To "grant" such a patent license to a

party means to make such an agreement or commitment not to enforce a

patent against the party.

If you convey a covered work, knowingly relying on a patent license,

and the Corresponding Source of the work is not available for anyone

to copy, free of charge and under the terms of this License, through a

publicly available network server or other readily accessible means,

then you must either (1) cause the Corresponding Source to be so

available, or (2) arrange to deprive yourself of the benefit of the

patent license for this particular work, or (3) arrange, in a manner

consistent with the requirements of this License, to extend the patent

license to downstream recipients. "Knowingly relying" means you have

actual knowledge that, but for the patent license, your conveying the

covered work in a country, or your recipient’s use of the covered work

in a country, would infringe one or more identifiable patents in that

country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or

arrangement, you convey, or propagate by procuring conveyance of, a

covered work, and grant a patent license to some of the parties

receiving the covered work authorizing them to use, propagate, modify

or convey a specific copy of the covered work, then the patent license

you grant is automatically extended to all recipients of the covered

work and works based on it.

A patent license is "discriminatory" if it does not include within

the scope of its coverage, prohibits the exercise of, or is

conditioned on the non-exercise of one or more of the rights that are

specifically granted under this License. You may not convey a covered

work if you are a party to an arrangement with a third party that is

in the business of distributing software, under which you make payment

to the third party based on the extent of your activity of conveying

the work, and under which the third party grants, to any of the

parties who would receive the covered work from you, a discriminatory

patent license (a) in connection with copies of the covered work

conveyed by you (or copies made from those copies), or (b) primarily

for and in connection with specific products or compilations that

contain the covered work, unless you entered into that arrangement,

or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting

any implied license or other defenses to infringement that may

otherwise be available to you under applicable patent law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or

otherwise) that contradict the conditions of this License, they do not

excuse you from the conditions of this License. If you cannot convey a

covered work so as to satisfy simultaneously your obligations under this

License and any other pertinent obligations, then as a consequence you may

not convey it at all. For example, if you agree to terms that obligate you

to collect a royalty for further conveying from those to whom you convey
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the Program, the only way you could satisfy both those terms and this

License would be to refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have

permission to link or combine any covered work with a work licensed

under version 3 of the GNU Affero General Public License into a single

combined work, and to convey the resulting work. The terms of this

License will continue to apply to the part which is the covered work,

but the special requirements of the GNU Affero General Public License,

section 13, concerning interaction through a network will apply to the

combination as such.

14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of

the GNU General Public License from time to time. Such new versions will

be similar in spirit to the present version, but may differ in detail to

address new problems or concerns.

Each version is given a distinguishing version number. If the

Program specifies that a certain numbered version of the GNU General

Public License "or any later version" applies to it, you have the

option of following the terms and conditions either of that numbered

version or of any later version published by the Free Software

Foundation. If the Program does not specify a version number of the

GNU General Public License, you may choose any version ever published

by the Free Software Foundation.

If the Program specifies that a proxy can decide which future

versions of the GNU General Public License can be used, that proxy’s

public statement of acceptance of a version permanently authorizes you

to choose that version for the Program.

Later license versions may give you additional or different

permissions. However, no additional obligations are imposed on any

author or copyright holder as a result of your choosing to follow a

later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY

APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT

HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY

OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,

THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM

IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF

ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING

WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS

THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY

GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
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USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF

DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD

PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),

EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF

SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided

above cannot be given local legal effect according to their terms,

reviewing courts shall apply local law that most closely approximates

an absolute waiver of all civil liability in connection with the

Program, unless a warranty or assumption of liability accompanies a

copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest

possible use to the public, the best way to achieve this is to make it

free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest

to attach them to the start of each source file to most effectively

state the exclusion of warranty; and each file should have at least

the "copyright" line and a pointer to where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.>

Copyright (C) <year> <name of author>

This program is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program. If not, see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short

notice like this when it starts in an interactive mode:

<program> Copyright (C) <year> <name of author>

This program comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.

This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate

parts of the General Public License. Of course, your program’s commands

might be different; for a GUI interface, you would use an "about box".
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You should also get your employer (if you work as a programmer) or school,

if any, to sign a "copyright disclaimer" for the program, if necessary.

For more information on this, and how to apply and follow the GNU GPL, see

<http://www.gnu.org/licenses/>.

The GNU General Public License does not permit incorporating your program

into proprietary programs. If your program is a subroutine library, you

may consider it more useful to permit linking proprietary applications with

the library. If this is what you want to do, use the GNU Lesser General

Public License instead of this License. But first, please read

<http://www.gnu.org/philosophy/why-not-lgpl.html>.
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