
IMPLEMENTATION OF A CUTTING PLANE

METHOD FOR SEMIDEFINITE PROGRAMMING

by

Joseph G. Young

Submitted in Partial Fulfillment

of the Requirements for the Degree of

Masters of Science in Mathematics with Emphasis in Operations Research

and Statistics

New Mexico Institute of Mining and Technology

Socorro, New Mexico

May, 2004

ABSTRACT

Semidefinite programming refers to a class of problems that optimizes

a linear cost function while insuring that a linear combination of symmetric

matrices is positive definite. Currently, interior point methods for linear pro-

gramming have been extended to semidefinite programming, but they possess

some drawbacks. So, researchers have been investigating alternatives to inte-

rior point schemes. Krishnan and Mitchell[24, 19] investigated a cutting plane

algorithm that relaxes the problem into a linear program. Then, cuts are added

until the solution approaches optimality.

A software package was developed that reads and solves a semidefi-

nite program using the cutting plane algorithm. Properties of the algorithm

are analyzed and compared to existing methods. Finally, performance of the

algorithm is compared to an existing primal-dual code.

TABLE OF CONTENTS

LIST OF TABLES iii

LIST OF FIGURES iv

1. LINEAR PROGRAMMING 1

1.1 Introduction . 1

1.2 The Primal Problem . 1

1.3 The Dual Problem . 2

2. SEMIDEFINITE PROGRAMMING 4

2.1 Introduction . 4

2.2 The Primal Problem . 4

2.3 The Dual Problem . 5

2.4 A Primal-Dual Interior Point Method 7

3. CUTTING PLANE ALGORITHM 13

3.1 Introduction . 13

3.2 Semiinfinite Program Reformulation of the Semidefinite Program 13

3.3 Linear Program Relaxation of the Semiinfinite Program 14

3.4 Bounding the LP . 18

3.5 Optimal Set of Constraints . 18

3.6 Removing Unneeded Constraints 21

3.7 Resolving the Linear Program 22

i

3.8 Stopping Conditions . 23

3.9 Summary . 24

3.10 Example . 25

4. COMPUTATIONAL RESULTS 31

4.1 Introduction . 31

4.2 Efficiency of the Algorithm . 31

4.2.1 Resolving the LP . 31

4.2.2 Finding the Eigenvalues and Eigenvectors of Z 32

4.2.3 Constructing New Constraints 32

4.3 Benchmarks . 33

4.4 Discussion of Results . 33

5. CONCLUSIONS 38

5.1 Introduction . 38

5.2 Unique Properties . 38

5.3 Performance . 39

5.4 Final Conclusions . 40

REFERENCES 41

GLOSSARY 44

ii

LIST OF TABLES

4.1 Benchmark Results for Solver 34

4.2 Benchmark Results for Solver 35

4.3 Benchmark Results for Solver 36

iii

LIST OF FIGURES

2.1 Summary of Predictor-Corrector Primal-Dual Method 9

3.1 Initial Constraints of LP . 26

3.2 Constraints After One Iteration 27

3.3 Constraints After Two Iterations 29

3.4 Constraints After Three Iterations 30

iv

This report is accepted on behalf of the faculty of the Institute by the following

committee:

Brian Borchers, Advisor

Joseph G. Young Date

CHAPTER 1

LINEAR PROGRAMMING

1.1 Introduction

Linear programming attempts to optimize a linear function subject

to linear constraints. The problem was first solved in the 1940s when Dantzig

developed the simplex method[9] to solve planning problems for the U.S. Air

Force. Over the next sixty years, linear programming was applied to problems

ranging from engineering to economics.

In practice, the simplex method is an efficient algorithm, but its com-

plexity is higher than polynomial. In 1979, Khachian developed the ellipsoid

method[17]. This method has polynomial complexity, but it is numerically un-

stable in the presence of roundoff errors. In 1984, Karmarkar developed an

interior point method[16] for linear programming. This algorithm possessed

both polynomial complexity and practical efficiency.

Both the simplex method and interior point methods are still used in

practice. A combination of these methods allows a wide variety of very large

problems to be solved.

1.2 The Primal Problem

Any minimization problem can be reformulated as a maximization

problem and vice versa by negating the sign of the objective function. As a

1

2

result, linear programming problems can be developed from either viewpoint.

However, a specific convention is developed and analyzed below for convenience.

The linear programming primal problem is given by

max cT x

subj Ax = b

xi ≥ 0 i = 1, 2, · · · , n

where c ∈ <m×1, A ∈ <m×n is nonsingular, and b ∈ <m×1 are given and

x ∈ <n×1 is variable[8]. We assume that the constraint matrix A has linearly

independent rows to simplify calculations.

The function x 7→ cT x is referred as the objective function which

attains its optimal value at some optimal solution. In addition, any point

that satisfies the constraints is called feasible. Although all the constraints are

linear, each is labeled as either a linear constraint or a nonnegativity constraint.

The nonnegativity constraints prevent each element of the solution from being

negative. In a feasible solution, if xi = 0 for some i, then the constraint xi ≥ 0

is active. Otherwise, it is inactive.

1.3 The Dual Problem

Every linear programming maximization problem has an equivalent

minimization problem, or dual. These two problems provide useful information

about each other. For example, the value of the dual objective function provides

an upper bound for the value of primal objective function. This and other

results are discussed below.

3

The linear programming dual problem is given by

min bT y

subj AT y − c ≥ 0

where y ∈ <m×1 is variable.

The following theorems describe the relationship between the primal

and dual problems. For a more complete discussion of these theorems, refer to

Chvatal[8].

Theorem 1 (Weak Duality in Linear Programming). Each value of the

primal objective function provides a lower bound for every value of the dual

objective function.

Theorem 2 (Strong Duality in Linear Programming). If a primal prob-

lem possesses an optimal solution then its dual has an optimal solution and the

optimal values of the two problems coincide.

Theorem 3 (Complementary Slackness in Linear Programming). At

optimality, each primal, linear constraint is active or the corresponding dual

variable is 0 or both. In addition, each dual linear constraint is active or the

corresponding primal variable is 0 or both.

Definition 1 (Duality Gap). The difference between the primal and dual

objective values of primal and dual feasible solutions is called the duality gap.

CHAPTER 2

SEMIDEFINITE PROGRAMMING

2.1 Introduction

Semidefinite programming is a generalization of linear programming

where the nonnegativity constraints are replaced with a single semidefinite

constraint. Although semidefinite programs were investigated as early as the

1960s[2], they were not thoroughly analyzed until the 1990s. Since then, many

effective algorithms have been developed such as the primal-dual interior point

method[15] and dual interior point method. These have been implemented

in several different codes such as CSDP[5], SDPA[12], DSDP[4], SDPT3[25],

and PENNON[18]. Further, semidefinite programming has been applied to

problems in areas ranging from electrical engineering[7] to graph theory[14].

Most modern algorithms solve semidefinite programs by generalizing

interior point methods for linear programming. These methods produce very

accurate results, but are computationally expensive for problems with more

than a few thousand variables. Currently, many researchers are attempting to

solve these large problems by parallelizing existing codes[3, 13].

2.2 The Primal Problem

Similar to linear programs, it unimportant for the primal to be a

minimization or a maximization problem. However, a specific convention is

4

5

developed for convenience. In the following section, Sn×n ⊂ <n×n is the set

of all symmetric n by n matrices. A matrix X ∈ Sn×n � 0 if it is positive

semidefinite.

The semidefinite programming primal problem is given by

max tr(CX)

subj A(X) = b (SDP)

X � 0

where C ∈ Sn×n, Ai ∈ Sn×n, A(x) =
[

tr(A1X), tr(A2X), . . . , tr(AmX)
]T

, and

b ∈ <m×1 are given and the matrix X ∈ Sn×n is variable.

This problem is more general than the linear program formulated in

Chapter 1. Notice, the non-negativity has been replaced by a new semidefi-

niteness constraint. Note that, when X is diagonal, the semidefinite program

reduces to a linear program.

2.3 The Dual Problem

As in linear programming, every semidefinite programming primal

has a dual. The relationship between the primal and dual problems in semidef-

inite programs differs from linear programming in several ways. For example,

the primal and dual optimal values are not necessarily equal in semidefinite

programming. These and other results are discussed below.

6

The semidefinite dual problem is given by

min bT y

subj AT (y) − C = Z (SDD)

Z � 0

where AT (y) =
m
∑

i=1

yiAi, Ai ∈ Sn×n, and Z ∈ Sn×n � 0 are given and y ∈ <m×1

is variable.

Recall, the constraint matrix in a linear program is assumed to have

linearly independent rows. A similar assumption is made in semidefinite pro-

gramming. This simplifies many calculations.

Assumption 1. The constraint matrices are all linearly independent.

The following theorems describe the relationship between the primal

and dual problems. For a more complete discussion of these theorems, refer to

either de Klerk[10] or Wolkowicz et. al.[27].

Theorem 4 (Weak Duality in Semidefinite Programming). Each value

of the primal objective function provides a lower bound for every value of the

dual objective function.

Theorem 5 (Strong Duality in Semidefinite Programming). If the op-

timal primal and dual objective values are finite and both the primal and dual

problems contain strictly feasible solutions, then the optimal primal and dual

objective values are equal.

The strong duality theorem leads to the assumption.

7

Assumption 2. Both primal and dual problems have strictly feasible solutions.

Theorem 6 (Duality Gap In Semidefinite Programs). If X and Z are

feasible, the duality gap in semidefinite programs is given by tr(ZX)[10].

Proof. Recall, the duality gap in semidefinite programs is given by tr(CX) −

bT y. However, this can be reformulated as

tr(CX) − bT y = tr((AT (y) + Z)X) − bT y

= tr(ZX) + tr(AT (y)X) − A(x)T y

= tr(ZX) + tr(

m
∑

i=1

yiAiX) − bT y

= tr(ZX) +
m
∑

i=1

yitr(AiX) − bT y

= tr(ZX) +

m
∑

i=1

yibi − bT y

= tr(ZX)

2.4 A Primal-Dual Interior Point Method

The following algorithm is a predictor-corrector variant of the interior

point method presented by Helmberg, Rendl, Vanderbei, and Wolkowicz in

[15]. It attempts to take a series of Newton’s method steps toward the optimal

solution. Unfortunately, if a solution lies too close to the edge of the feasible

region, Newton’s method progresses very slowly. Therefore, it is advantageous

to search for solutions near the center of the feasible region.

8

The development of the algorithm begins by introducing the dual

barrier problem

min bT y − µ(log det Z)

subj AT (y) − C = Z � 0 (DBP)

where µ > 0 ∈ < is the barrier parameter. When µ > 0, this objective function

penalizes movement toward the edge of the feasible region. Hence, Newton’s

method tends to find solutions toward the center of the feasible region. Un-

fortunately, determining an appropriate value of µ is difficult. So, the method

will make an initial predictor step to find an appropriate value of µ, then use

this barrier parameter in the corrector step.

The first order necessary conditions for optimality[23] are

Fd = Z + C − AT (y) = 0

Fp = b − A(X) = 0

XZ − µI = 0

where Fp and Fd are the primal and dual infeasibility respectively and final

equation is the complementarity condition.

The barrier function has two advantages. First, the derivative of

log det Z is Z−1. Second, log det Z is strictly concave. So, either there exists

a unique solution (Xµ, yµ, Zµ) to the first order necessary conditions or the

problem is unbounded.

The one parameter family (Xµ, yµ, Zµ), 0 ≤ µ ≤ ∞ is called the cen-

tral path. Given a point on the central path, it is possible to find its corre-

9

sponding value of µ by setting

µ =
tr(ZX)

n

where the size of X and Z are both n by n. This follows immediately from

the complementary condition. It can be shown that, as µ approaches 0, the

optimal solution of the dual-barrier problem approaches the optimal solution

of the original problem[10].

The algorithm consists of two major steps. In the first, a Newton’s

method step is taken with µ = 0. In the second, this point is used to predict a

good value of µ for the corrector step. These steps are demonstrated in Figure

2.1.

Corrector StepStep

Central Path

Current Solution

Predictor

Figure 2.1: Summary of Predictor-Corrector Primal-Dual Method

The predictor step begins by taking a Newton’s method step for these

10

equations with µ = 0

∆Ẑ − AT (∆ŷ) = −Fd

−A(∆X̂) = −Fp

Z∆X̂ + ∆ẐX = −ZX

If the first equation is solved for AT (∆ŷ), we have

AT (∆ŷ) = Fd + ∆Ẑ

Next, multiply the equation by X on the right, Z−1 on the left, and then apply

A(•) to both sides

A(Z−1AT (∆ŷ)X) = A(Z−1FdX) + A(Z−1∆ẐX)

= A(Z−1FdX) + A(Z−1(−ZX − Z∆X̂))

= A(Z−1FdX) + A(−X) + A(−∆X̂)

= A(Z−1FdX) + A(−X) + A(X) − b

= A(Z−1FdX) − b

In matrix form, the equation for ∆ŷ can be written as

O∆ŷ = A(Z−1FdX) − b

where O =
[

A(Z−1A1X) · · · A(Z−1AmX)
]

. Once ∆ŷ is known, ∆Ẑ and

∆X̂ are given by

∆Ẑ = −Fd + AT (∆ŷ)

∆X̂ = −X + Z−1FdX − Z−1AT (∆ŷ)X

11

Note that if ∆X̂ is not symmetric then we use the symmetric part of ∆X̂ given

by

∆X̂S =
∆X̂ + ∆X̂T

2

The point (X + ∆X̂, y + ∆ŷ, Z + ∆Ẑ) may not be feasible. So, a line search

must be used to find α̂D and α̂P such that (X + α̂P ∆X̂, y + α̂D∆ŷ, Z + α̂D∆Ẑ)

is feasible. Then, µ can be estimated by

µ =
tr
(

(Z + α̂D∆Ẑ)(X + α̂P ∆X̂)
)

n

The corrector step begins by computing a Newton’s method step using

the value of µ estimated in the predictor step

∆Z̄ − AT (∆ȳ) = −Fd

−A(∆X̄) = −Fp

Z∆X̄ + ∆Z̄X = −ZX + µI

The equations are solved similarly to those in the predictor step. However,

since we reintroduced the barrier parameter, the change in ȳ is given by

O∆ȳ = A(Z−1FdX) − b + A(µZ−1)

Once ȳ is known, the same equations are used to determine both Z̄ and X̄

∆Z̄ = −Fd + AT (∆ȳ)

∆X̄ = −X + Z−1FdX − Z−1AT (∆ȳ)X

As before, if these matrices are not symmetric, their symmetric parts are taken

instead. Finally, since the point (X+∆X̄, y+∆ȳ, Z+∆Z̄) may not be feasible,

12

a line search must be used to find ᾱD and ᾱP such that (X + ᾱP ∆X̄, y +

ᾱD∆ȳ, Z + ᾱD∆Z̄) is feasible.

This algorithm iterates until both the primal and dual solutions are

feasible and the resulting duality gap becomes sufficiently small.

CHAPTER 3

CUTTING PLANE ALGORITHM

3.1 Introduction

Krishnan and Mitchell[24, 19] developed the cutting plane method

by reformulating the semidefinite program into a semiinfinite program. Then,

they relaxed the semiinfinite program into a linear program. Since the optimal

solution to the relaxed linear program is not necessarily feasible in the semidef-

inite program, linear cuts are iteratively added until the solution approaches

feasibility and optimality.

3.2 Semiinfinite Program Reformulation of the Semidefinite Pro-
gram

An alternative definition of positive semidefinite leads to a reformu-

lation of the semidefinite program into a semiinfinite program.

Theorem 7. A matrix Z is positive semidefinite if and only if dT Zd ≥ 0 ∀d ∈

B ⊂ <n×n where B is a ball about the origin.

Proof. Recall that Z is positive semidefinite if and only if its inner product

with all rank one matrices is greater than or equal to zero. So, take any d ∈ <n

and let d̂ = d
‖d‖

r where r is the radius of the ball about the origin. As a result,

13

14

d̂ is simply a scaled version of d that lies within the ball. If we take dTZd then

d̂T Zd̂ =

(

dT

‖d‖
r

)

Z

(

d

‖d‖
r

)

=

(

r

‖d‖

)2

dTZd

Thus, dT Zd ≥ 0 if and only if d̂T Zd̂ ≥ 0. Consequently, we only need to

consider vectors in B when determining whether Z is positive definite.

The semiinfinite dual problem is given by

min bT y

subj dT (AT (y) − C)d ≥ 0 ∀d ∈ B (SID)

where B is a ball about the origin. Note that the problem must be relaxed

before a solution can be found.

3.3 Linear Program Relaxation of the Semiinfinite Program

As discussed above, very sophisticated solvers exist for linear pro-

grams. So, relaxing the semiinfinite program into a linear program will allow

a near feasible solution to be found very quickly.

The linear programming relaxation is found by taking a finite subset of

the infinite number of constraints from the semiinfinite program. The resulting

dual problem is given by

min bT y

subj dT
j (AT (y) − C)dj ≥ 0 j = 1, . . . , p (LPD)

where p is arbitrary, but finite.

15

The primal problem is obtained by finding the dual of the dual linear

program. The dual linear program can be rewritten as

min bT y

subj dT
j (

m
∑

i=1

yiAi − C)dj ≥ 0 j = 1, . . . , p

Then, the constraint can be reformulated as

dT
j (

m
∑

i=1

yiAi − C)dj ≥ 0 ⇐⇒ dT
j (

m
∑

i=1

yiAi)dj ≥ dT
j Cdj

⇐⇒
m
∑

i=1

yid
T
j Aidj ≥ dT

j Cdj

⇐⇒

m
∑

i=1

yitr(djd
T
j Ai) ≥ dT

j Cdj

This allows the primal problem to be formulated as

max

p
∑

j=1

tr(Cdjd
T
j)xj

subj

p
∑

j=1

tr(djd
T
j Ai)xj = bi i = 1, . . . , m

xj ≥ 0

Again, the constraint can be reformulated
p
∑

j=1

tr(djd
T
j Ai)xj = bi ⇐⇒

p
∑

j=1

tr(djd
T
j Ai)xj = bi

⇐⇒

p
∑

j=1

tr(Ai(djd
T
j xj)) = bi

⇐⇒ tr(Ai(

p
∑

j=1

djd
T
j xj)) = bi

⇐⇒ A

(

p
∑

j=1

xjdjd
T
j

)

= b

16

Finally, the primal problem is given by

max tr

(

C(

p
∑

j=1

xjdjd
T
j)

)

subj A

(

p
∑

j=1

xjdjd
T
j

)

= b (LPP)

where x ∈ <++, all non-negative reals.

Since the dual LP is a relaxation of the dual SDP, a feasible solution

of the dual LP isn’t necessarily feasible in the dual SDP. Further, there is

no guarantee that the dual LP is bounded. So, it is possible to construct

a relaxation where the primal LP is infeasible. However, if the dual LP is

bounded, the primal LP is more constrained than the primal SDP. So, all

feasible solutions of the primal LP are feasible in the primal SDP. This is given

formally by the following theorem.

Theorem 8 (Linear Primal Feasibility Implies Semidefinite Feasibil-

ity). Any feasible solution to the linear relaxation of the SDP primal is also

feasible in the SDP primal.

Proof. Let, X =
p
∑

j=1

xjdjd
T
j

We must show that A(X) = b and X � 0.

The first part following immediately since A

(

p
∑

j=1

xjdjd
T
j

)

= b.

17

The second part can seen by noting

dT Xd = dT

(

p
∑

j=1

xjdjd
T
j

)

d

=

p
∑

j=1

xjd
T (djd

T
j)d

=

p
∑

j=1

xj(d
T dj)

2

≥ 0

since xj ≥ 0 for all j.

Typically, the duality gap provides a measure of how far a method is

from converging. However, in this method, the duality gap of the semidefinite

program is zero for all optimal solutions to the linear relaxation.

Theorem 9 (Optimallity of the Linear Relaxation Implies Zero Semidef-

inite Duality Gap). The duality gap of the semidefinite program is zero for

all optimal solutions to the linear programming relaxation.

Proof. The duality gap of a linear program is zero at optimality. By con-

struction, the objective value of the semidefinite program is the same as the

relaxation. So, when the relaxation is at optimality, the duality gap for both

programs is zero.

For a solution (X∗, y∗, Z∗) to be optimal, it must satisfy three crite-

ria: primal feasibility, dual feasibility, and a zero duality gap. The following

theorem shows that if Z∗ � 0 then the solution is optimal.

18

Theorem 10 (Feasibility with Respect to the Dual Semidefinite Con-

straint Implies Optimallity). Let y∗ be an optimal solution to the linear

dual and X∗ =
p
∑

j=1

xjdjd
T
j . If Z∗ = AT (y∗) − C � 0, the solution (X∗, y∗, Z∗)

is optimal.

Proof. We must show that all three criteria for optimality are met.

First, Theorem 8 shows the primal solution is feasible. Second, the

dual solution is feasible since we assumed that Z∗ � 0 and we defined Z∗ =

AT (y∗)−C. Finally, Theorem 9 demonstrates that the duality gap is zero.

3.4 Bounding the LP

There exists a constraint that bounds the objective function of the

form bT y ≥ α. If the original semidefinite program is bounded, then α can be

chosen such that every feasible solution satisfies the above constraint. Although

this constraint insures the LP is bounded, the choice of α is problem dependent.

It is important to note that the constraint bT y ≥ α does not follow the

form dT (AT (y) − C)d ≥ 0. So, it is not possible to generate a primal solution

X until this constraint has been removed from the relaxation. Techniques for

removing constraints are discussed later.

3.5 Optimal Set of Constraints

Assume that the current optimal solution of the dual LP is infeasible

in the SDP dual. Then, adding more constraints to the problem should produce

a solution closer to feasibility. These new constraints are called a deep cuts since

the current feasible solution is excluded from the new feasible set. However,

19

not all cuts will produce an equivalent improvement. Some constraints are

redundant and others produce a very marginal gain. So, an intelligent choice

of constraints allows the method to converge faster.

Theorem 11 (Non-Negativity of Diagonal Elements). For every feasible

solution to the dual SDP, the dual LP must satisfy

m
∑

i=1

[Ai]jjyi ≥ Cjj

where 1 ≤ j ≤ n.

Proof. Let Z be positive semidefinite and let ej ∈ <n×n be an elementary vector

with a 1 in the jth position. Since Z � 0,

eT
j Zej ≥ 0 ⇐⇒ [Z]jj ≥ 0

⇐⇒ [AT (y) − C]jj ≥ 0

⇐⇒

m
∑

i=1

[Ai]jjyi ≥ Cjj

These cuts are not required for the algorithm to function, but they

tend to enhance the performance of the method. Further, they follow the form

eT
i (AT (y) − C)ei ≥ 0. So, it is possible to generate a primal solution X while

these constraints are part of the relaxation.

Theorem 12 (Deep Cut). The cut given by

d(k)T AT (y)d(k) ≥ d(k)T Cd(k)

where d(k) ∈ B 3 d(k)T (AT (y(k)) − C)d(k) < 0 and y(k) is the optimal solution

of LP dual at iteration k, excludes the current feasible solution.

20

Proof. A deep cut is a constraint that excludes the current feasible solution

from the new feasible set. So, we must show the current point is infeasi-

ble if the new constraint is added. However, this follows immediately since

d(k)T (AT (y(k)) − C)d(k) < 0.

The following theorem describes how to find d(k) quickly and effi-

ciently.

Theorem 13 (Deep Cuts Over a Unit Ball in 2-Norm). Let B = {d 3

‖d‖2 ≤ 1}. Every eigenvector d(k) that corresponds to a negative eigenvalue of

AT (y(k)) − C describes a deep cut.

Proof. Let λ(k) be the eigenvalue of AT (y(k)) − C that corresponds to d(k).

Notice,

d(k)T
(

AT (y(k)) − C
)

d(k) = d(k)T λ(k)d(k)

= λ(k)

However, λ(k) < 0 by assumption. So, the cut is deep.

Although any eigenvector corresponding to a negative eigenvalue de-

scribes a deep cut, generating all eigenvectors of a large matrix is expensive.

So, the following theorem describes which eigenvectors produce the deepest

possible cut

Theorem 14 (Optimal Deep Cut Over a Unit Ball in 2-Norm). Let

B = {d 3 ‖d‖2
2 ≤ 1}. The cut created from the eigenvector that corresponds

to the minimum eigenvalue of Z (k) maximizes the distance from the current

solution and the feasible region.

21

Proof. This problem is equivalent to

min
d(k)

d(k)T Z(k)d(k) subj ‖d(k)‖2
2 ≤ 1

There are two cases two consider.

First, assume that the constraint is inactive. This implies that the

minimum is an unconstrained minimum. However, this minimum can’t exist

unless Z(k) is positive definite. But, this is a contradiction since by assumption

Z(k) 6� 0.

Second, assume that the constraint is active. From the first order

necessary conditions, Z(k)d = λd. So, all eigenvectors of Z (k) are stationary

points. Let d(k) be an eigenvector with corresponding eigenvalue λ(k). Then,

d(k)T Z(k)d(k) = d(k)T λ(k)d(k) = λ(k). Thus, the cut created from the minimum

eigenvalue’s eigenvector maximizes the infeasibility of the current solution.

3.6 Removing Unneeded Constraints

The cutting plane method leads to a huge build up of constraints over

time. However, as the algorithm progresses, many of these constraints become

unneeded. Hence, at every iteration, all inactive and redundant constraints

should be removed.

Inactive constraints are easily determined and removed. However, re-

dundant constraints are more elusive. If the dual variable corresponding to

a constraint is zero, then the constraint does not contribute to the solution.

However, not all constraints with a corresponding zero dual variable can be re-

moved. Eliminating one constraint may change whether another is redundant.

22

A fast method to eliminate unneeded constraints simply looks at the

basis of the solved linear program. If a slack variable is in the basis, the

corresponding constraint is eliminated. Since it is possible that a constraint is

degenerate, this elimination method is not entirely safe. However, in practice,

useful constraints are rarely eliminated. Finally, in practice, it is advantageous

to preserve the constraints that maintain the non-negativity of the diagonal

elements of Z.

3.7 Resolving the Linear Program

It is very costly to resolve the linear program from scratch at every

iteration. Fortunately, the dual simplex method provides a fast restart option.

Let y be a solution to the dual linear program. Let ŷ be a vector where each

element corresponds to an active constraint. Let Â be the constraint matrix

with all inactive constraints removed. Then, ŷ is feasible in Â since

[AT y − c]k =
m
∑

i=1

Aikyi

=
∑

i∈Active

Aikyi

=
∑

Âikŷi

≥ 0

If new constraints are added and their corresponding dual variables

set to 0, then the solution remains dual feasible. Hence, the dual simplex

method can be warm started using this new constraint matrix and solution.

Since the distance between solutions at each iteration changes only slightly,

this gives a large performance improvement.

23

3.8 Stopping Conditions

The seventh DIMACS implementation challenge defined six different

error measures

err1(X, y, Z) =
‖A(X) − b‖F

1 + ‖b‖1

err2(X, y, Z) = max

{

0,
−λmin(X)

1 + ‖b‖1

}

err3(X, y, Z) =
‖AT (y) + Z − C‖F

1 + ‖C‖1

err4(X, y, Z) = max

{

0,
−λmin(Z)

1 + ‖C‖1

}

err5(X, y, Z) =
tr(CX) − bT y

1 + |tr(CX)| + |bT y|

err6(X, y, Z) =
tr(ZX)

1 + |tr(CX)| + |bT y|

where λmin(X) is the minimum eigenvalue of X[22].

The first two errors describe the primal feasibility with respect to the

linear constraints and the semidefinite constraint. Since this method creates

a series of strictly primal feasible solutions, the first two error measures are

zero. The second two errors describe the dual feasibility with respect to the

linear constraints and the semidefinite constraint. Because this method creates

a series of dual solutions that are strictly feasible with respect to the linear

constraints, the third error measure is zero. Finally, the last two error measures

describe the duality gap. Since the method produces solutions where the duality

gap is zero, the fifth error measure is zero. Because Z is not typically feasible,

the sixth error measure is meaningless.

These error measures give a good indication of how close a solution is

24

to optimality. However, in this method, all of the error measures are zero save

the fourth. So, the feasibility of the dual with respect to the semidefinite con-

straint provides a stopping criteria. Unfortunately, the fourth DIMACS error

does not provide a very good stopping criteria. In general, the minimum eigen-

value of Z does not monotonically approach 0. Further, the objective function

may approach optimality long before Z approaches feasibility. In practice, it

is difficult to reduce the fourth error measure to less that .1. Despite this the

solver uses this error measure as its stopping criteria.

Ideally, we would like to have a set of feasible primal and dual so-

lutions. Then, we could base our stopping criteria off of the fifth and sixth

DIMACS error measures that describe the duality gap. So, it would help

to find a perturbation of Z such that we maintain feasibility, but the size

of the perturbation converges to zero as the solution converges to optimal-

ity. Let Ẑ(k) = Z(k) + E(k) � 0. Since all feasible solutions have the form

Z = AT (y) − C, an appropriate perturbation E(k) would be found such that

E(k) = AT (e(k)) while its norm converges to 0 as the method converges toward

optimality. Once found, Ẑ(k) would provide an upper bound to the problem

that converges toward optimality. Unfortunately, there is no general method

to determine E(k).

3.9 Summary

The cutting plane algorithm can be summarized as

Add diagonal element non-negativity constraints

Add bounding constraint

25

While the fourth DIMACS error measure > Tolerance

Remove inactive constraints

Add new constraints

Resolve LP

End While

3.10 Example

A simple two-dimensional semidefinite program is

min y1 + y2

subj

[

2 4
4 0

]

y1 +

[

2 0
0 6

]

y2 �

[

1 2
2 3

]

We’ll assume that the minimum value our objective function could

attain is 0. So, our initial relaxation is

min y1 + y2

subj 2y1 + 2y2 ≥ 1

6y2 ≥ 3

y1 + y2 ≥ 0

Notice that the first two constraints insure the diagonal elements of Z will be

positive while the third constraint bounds the LP. The feasible region is shown

in Figure 3.1. After solving the LP, we find that the optimal solution is (0, .5)

and the optimal value of .5. Since the third constraint is no longer tight, it will

be removed from the constraint matrix. Our current SDP solution is given by

(X, y, Z) =

(

NA,

[

0
.5

]

,

[

0 −2
−2 0

])

26

Figure 3.1: Initial Constraints of LP

Notice that we can not construct a solution for X since this iteration included

the constraint that bounds the objective function. The eigenvalues and vectors

of Z are described by

{(

2,

[

−0.7071
0.7071

])

,

(

−2,

[

−0.7071
−0.7071

])}

The second eigenvector allows a new constraint to be be created and added to

the LP.

27

Our new relaxation is

min y1 + y2

subj 2y1 + 2y2 ≥ 1

6y2 ≥ 3

.5y1 + .4y2 ≥ 4

The feasible region is shown in Figure 3.2. Again we solve the LP and find

Figure 3.2: Constraints After One Iteration

its optimal solution of (.4, .5) with an optimal value of .9. Although the first

constraint is no longer tight, we maintain it to insure that the diagonal elements

of Z remain positive. Our current SDP solution is given by

(X, y, Z) =

([

.1000 .1000

.1000 .1333

]

,

[

.4

.5

]

,

[

.8 −.4
−.4 0

])

28

The eigenvalue and eigenvector pairs of Z are given by

{(

.96596,

[

−.92388
.38268

])

,

(

−.16569,

[

−.38268
−.92388

])}

We use the second eigenvector to construct a new constraint that is added to

the LP.

Our new relaxation is given by

min y1 + y2

subj 2y1 + 2y2 ≥ 1

6y2 ≥ 3

.5y1 + .4y2 ≥ 4

3.1213y1 + 5.4142y2 ≥ 4.1213

The feasible region is shown in Figure 3.3. Once solved, the optimal solution of

this problem is (.35456, .55680) while the optimal value is .91136. Both the first

and second constraints are no longer tight, but we will continue to maintain

them to insure that the diagonal elements of Z are positive. The solution of

the SDP is

(X, y, Z) =

([

.0886 .1028

.1028 .1371

]

,

[

.35456

.55680

]

,

[

.82272 −.58174
−.58174 .34077

])

The eigenvalues and eigenvectors of Z are given by

{(

1.2114,

[

−.83147
.55557

])

,

(

−.047934,

[

−.55557
−.83147

])}

Again, we use the second eigenvector to create a new constraint and

29

Figure 3.3: Constraints After Two Iterations

add it to the LP. The new LP is given by

min y1 + y2

subj 2y1 + 2y2 ≥ 1

6y2 ≥ 3

.5y1 + .4y2 ≥ 4

3.1213y1 + 5.4142y2 ≥ 4.1213

4.3128y1 + 4.7654y2 ≥ 4.2304

The feasible region is shown in Figure 3.4. Then, we find the optimal solution

of this system to be (.32544, .59320) while the optimal value is .91864. Now,

the first, second, and fourth constraints are no longer tight. So, the first two

will remain to insure the diagonal elements of Z are positive, but the last will

30

Figure 3.4: Constraints After Three Iterations

be removed. The solution to the SDP is given by

(X, y, Z) =

([

.0814 .1047

.1047 .1395

]

,

[

.32544
.59320)

]

,

[

.82272 −.58174
−.58174 .34077

])

The eigenvalue and eigenvector pairs of Z are given by

{(

1.4102,

[

−.77307
.63432

])

,

(

−.013706

[

−.63432
−.77307

])}

We’ll stop at this step since the normed eigenvalue error is approximately

.002284.

In summary, this process is repeated until the normed eigenvalue error

is sufficiently small.

CHAPTER 4

COMPUTATIONAL RESULTS

4.1 Introduction

Krishnan and Mitchell proved that this method possesses polynomial

time convergence[19]. However, this doesn’t necessarily mean the algorithm

performs well. In the following chapter, the method’s computational properties

will be discussed.

4.2 Efficiency of the Algorithm

The three parts of the algorithm that take the most computational

time are resolving the LP, finding the eigenvalues of Z, and constructing new

constraints.

4.2.1 Resolving the LP

In general, the constraint matrix is fully dense. Further, the matrix

contains m columns and p rows where p is the number of linear constraints

necessary to approximate a corner of the semidefinite region. In practice, p

is bounded, but it depends on the problem. The benchmark results tabulate

several of these bounds.

The discussion above describes how to construct a new dual feasible

solution after the LP has been modified. Once this dual feasible solution is

31

32

obtained, it can be used to warm start the dual simplex method. In practice,

this provides very good performance. However, there exist problems where

adding new cuts significantly changes the optimal solution such as the control

problems from SDPLIB[6]. In this case, each resolve becomes more expensive.

In all but the most pathological cases, this step is an order of magnitude faster

that constructing new constraints.

4.2.2 Finding the Eigenvalues and Eigenvectors of Z

The dual solution Z is block diagonal. So, the eigenvalues of Z are the

eigenvalues of each block. Since non-negativity of the diagonal elements of Z is

enforced, diagonal blocks can be ignored. The remaining blocks are typically

dense, so LAPACK[1] routines that operate on symmetric matrices may be

used to find the eigenvalues. Since only a few eigenvalues are needed, Lanczos

method could be used to find eigenvalues. However, since each block of Z is

typically dense and this step of the algorithm is two orders of magnitude faster

than constructing the constraints, any benefit from using the Lanczos method

would be negligible.

4.2.3 Constructing New Constraints

Once the eigenvalues and eigenvectors of Z are known, new constraints

are added. Each coefficient of every new constraint requires O(n2) operations.

So, generating all constraints requires a total of O(cmn2) operations where

c is the number of cuts. Typically, each Ai is relatively sparse. So, sparse

linear algebra routines can dramatically improve performance. Even with these

optimizations, this step is typically an order of magnitude more expensive than

33

the other two.

4.3 Benchmarks

The method was benchmarked using problems from SDPLIB. In each

test case, the following external libraries are referenced. First, COIN-OR[20]

using GLPK[21] solved the linear programming relaxations. Since the resulting

constraint matrices are typically dense, COIN-OR was compiled using dense

factorizations. Second, LAPACK’s[1] DSYEVR routine found the eigenvalues.

The DSYEVR routine uses the relatively robust representations (RRR)[11]

driver for calculating eigenvalues. Finally, ATLAS[26] BLAS computed the

rest of the linear algebra.

Each test problem used the exact same input parameters. First, we

compute 10 cuts per block of Z. Second, we assume the method has converged

when the fourth DIMACS error falls below .1. Third, we assume the minimum

possible objective value is -1000. Finally, we limit the solver to 15 minutes of

computation.

The results are summarized in Tables 4.1, 4.2, and 4.3. A star in the

time column means the method reached the time limit. A star in other columns

means the method did not progress from the lower bound.

4.4 Discussion of Results

Each set of problems possessed different runtime performance and

results. These are discussed below.

First, the arch set is a series of topology design problems. On these

34

Problem m n Calculated

Optimal
Value

Actual

Optimal
Value

Relative

Error in
Optimal

Value

Fourth

DIMACS
Error

Measure

Average

Number
of Con-

straints

Time CSDP4.7

Time

arch0 174 335 1.24e-01 5.67e-01 7.81e-01 2.62e-01 4.22e+02 * 8.74e+00

arch2 174 335 1.81e-01 6.72e-01 7.30e-01 2.02e-01 4.29e+02 * 7.82e+00
arch4 174 335 2.12e-01 9.73e-01 7.83e-01 2.59e-01 4.32e+02 * 7.81e+00

arch8 174 335 2.83e-01 7.06e+00 9.60e-01 2.40e-01 4.28e+02 * 7.57e+00
control1 21 15 1.78e+01 1.78e+01 6.32e-04 7.12e-02 4.01e+01 4.20e-01 3.00e-02

control10 1326 150 * 3.85e+01 * * 3.50e+02 * 4.76e+02

control11 1596 165 * 3.20e+01 * * 3.51e+02 * 6.84e+02
control2 66 30 8.30e+00 8.30e+00 4.64e-04 9.40e-02 1.04e+02 2.25e+02 1.50e-01

control3 136 45 * 1.36e+01 * * 1.69e+02 * 1.00e+00

control4 231 60 * 1.98e+01 * * 2.55e+02 * 3.20e+00
control5 351 75 * 1.69e+01 * * 3.16e+02 * 1.54e+01

control6 496 90 * 3.73e+01 * * 3.22e+02 * 3.34e+01
control7 666 105 * 2.06e+01 * * 3.29e+02 * 7.88e+01

control8 861 120 * 2.03e+01 * * 3.35e+02 * 1.35e+02

control9 1081 135 * 1.47e+01 * * 3.46e+02 * 2.27e+02
gpp100 101 100 -1.13e+02 -4.49e+01 1.52e+00 5.51e-01 2.07e+02 6.43e+00 1.84e+00

gpp124-1 125 124 -6.60e+01 -7.34e+00 7.99e+00 7.23e+00 2.59e+02 2.20e+01 2.96e+00

gpp124-2 125 124 -1.31e+02 -4.69e+01 1.79e+00 1.19e+00 2.56e+02 1.39e+01 2.38e+00
gpp124-3 125 124 -1.00e+03 -1.53e+02 5.54e+00 3.90e+03 2.58e+02 2.83e+01 2.66e+00

gpp124-4 125 124 -5.55e+02 -4.19e+02 3.25e-01 1.57e+00 2.58e+02 2.44e+01 2.62e+00
gpp250-1 250 250 -1.51e+02 -1.54e+01 8.79e+00 1.04e+01 5.10e+02 5.55e+02 2.95e+01

gpp250-2 250 250 * -8.19e+01 * * 5.10e+02 * 2.14e+01

gpp250-3 250 250 -5.90e+02 -3.04e+02 9.45e-01 1.14e+01 5.10e+02 5.07e+02 2.15e+01
gpp250-4 250 250 * -7.47e+02 * * 3.07e+02 * 1.90e+01

Table 4.1: Benchmark Results for Solver

problems, the cutting plane algorithm made good progress toward a solution,

but it was very slow. Insuring that the diagonal elements of Z remained positive

helped by immediately progressing the primal objective function to near 0.

Second, the control group illustrates a series of control theory prob-

lems. The method worked very well on control1, but it had difficulty reducing

the fourth DIMACS error measure in control2. In fact, if we require that the

error measure be less than .01, the solver will produce an objective value with

35

Problem m n Calculated

Optimal
Value

Actual

Optimal
Value

Relative

Error in
Optimal

Value

Fourth

DIMACS
Error

Measure

Average

Number
of Con-

straints

Time CSDP4.7

Time

hinf1 13 14 7.64e-05 2.03e+00 1.00e+00 3.45e+01 2.82e+01 2.00e-02 1.00e-02

hinf10 21 18 1.26e-06 1.09e+02 1.00e+00 1.20e+02 4.23e+01 3.50e-01 5.00e-02
hinf11 31 22 7.12e-07 6.59e+01 1.00e+00 6.21e+01 5.55e+01 4.60e-01 8.00e-02

hinf12 43 24 2.56e-06 2.00e-01 1.00e+00 1.53e+03 6.71e+01 8.20e-01 6.00e-02
hinf13 57 30 5.58e-05 4.60e+01 1.00e+00 4.53e+00 8.30e+01 1.80e+00 1.40e-01

hinf15 91 37 7.33e-07 2.50e+01 1.00e+00 3.74e+01 1.22e+02 1.14e+01 3.10e-01

hinf2 13 16 6.48e-01 1.10e+01 9.41e-01 6.03e+01 3.11e+01 1.00e-02 2.00e-02
hinf3 13 16 1.24e+01 5.69e+01 7.82e-01 3.58e-01 3.17e+01 3.00e-02 3.00e-02

hinf4 13 16 2.24e+02 2.75e+02 1.83e-01 7.84e-02 2.96e+01 1.00e-02 2.00e-02

hinf5 13 16 6.27e+01 3.63e+02 8.27e-01 1.48e+02 2.94e+01 1.00e-02 2.00e-02
hinf6 13 16 1.92e+01 4.49e+02 9.57e-01 6.44e-02 3.12e+01 2.00e-02 4.00e-02

hinf7 13 16 1.47e+02 3.91e+02 6.25e-01 3.29e-02 2.99e+01 2.00e-02 7.00e-02
hinf9 13 16 1.97e+01 2.36e+02 9.17e-01 9.14e-02 3.02e+01 0.00e+00 1.00e-02

mcp100 100 100 2.04e+02 2.26e+02 9.72e-02 9.92e-02 1.42e+02 4.90e-01 7.40e-01

mcp124-1 124 124 1.22e+02 1.42e+02 1.38e-01 9.94e-02 1.68e+02 7.70e-01 1.42e+00
mcp124-2 124 124 2.43e+02 2.70e+02 1.01e-01 9.05e-02 1.76e+02 1.29e+00 1.32e+00

mcp124-3 124 124 4.28e+02 4.68e+02 8.54e-02 9.69e-02 1.65e+02 7.30e-01 1.39e+00

mcp124-4 124 124 8.16e+02 8.64e+02 5.62e-02 9.90e-02 1.60e+02 5.00e-01 1.44e+00
mcp250-1 250 250 2.75e+02 3.17e+02 1.32e-01 9.31e-02 3.31e+02 3.11e+01 9.70e+00

mcp250-2 250 250 4.75e+02 5.32e+02 1.07e-01 9.63e-02 3.32e+02 3.68e+01 9.62e+00
mcp250-3 250 250 9.02e+02 9.81e+02 8.07e-02 9.89e-02 3.18e+02 2.25e+01 9.75e+00

mcp250-4 250 250 1.59e+03 1.68e+03 5.61e-02 9.89e-02 3.15e+02 1.69e+01 1.05e+01

qap10 1021 101 * -1.09e+01 * * 2.80e+02 * 9.52e+00
qap5 136 26 * -4.36e+02 * * 1.49e+02 * 1.00e-01

qap6 229 37 * -3.81e+02 * * 1.94e+02 * 2.90e-01

Table 4.2: Benchmark Results for Solver

a relative error of 10−8 before it produces a dual feasible solution. The code

performed poorly on the rest of the problems. In particular, control9 gave the

method difficulty. After new cuts were added to the problem, the previous so-

lution was very far from primal feasibility. So, restarts of the simplex method

were very slow.

Third, the gpp set represents a series of graph equipartition problems.

All of these problems gave the method numerical difficulties. After the method

36

Problem m n Calculated

Optimal
Value

Actual

Optimal
Value

Relative

Error in
Optimal

Value

Fourth

DIMACS
Error

Measure

Average

Number
of Con-

straints

Time CSDP4.7

Time

qap7 358 50 * -4.25e+02 * * 2.12e+02 * 9.50e-01

qap8 529 65 * -7.57e+02 * * 2.47e+02 * 2.11e+00
qap9 748 82 * -1.41e+03 * * 2.82e+02 * 5.07e+00

ss30 132 426 5.09e-02 2.02e+01 9.97e-01 9.09e-02 4.36e+02 9.10e-01 3.22e+01
theta1 104 50 2.17e+01 2.30e+01 5.69e-02 2.76e-01 1.64e+02 4.79e+02 1.40e-01

theta2 498 100 1.00e+00 3.29e+01 9.70e-01 5.00e+01 4.33e+02 * 2.14e+00

theta3 1106 150 1.00e+00 4.22e+01 9.76e-01 1.10e+02 4.28e+02 * 1.14e+01
theta4 1949 200 1.00e+00 5.03e+01 9.80e-01 9.18e+01 4.69e+02 * 5.08e+01

truss1 6 13 -9.17e+00 -9.00e+00 1.88e-02 1.08e-02 2.38e+01 1.00e-02 1.00e-02

truss2 58 133 * -1.23e+02 * * 2.33e+02 * 6.00e-02
truss3 27 31 -9.29e+00 -9.11e+00 2.01e-02 5.08e-02 6.66e+01 1.40e-01 2.00e-02

truss4 12 19 -1.03e+01 -9.01e+00 1.40e-01 6.74e-02 3.74e+01 0.00e+00 0.00e+00
truss5 208 331 * -1.33e+02 * * 5.65e+02 * 8.50e-01

truss6 172 451 * -9.01e+02 * * 7.91e+02 * 1.10e+00

truss7 86 301 -9.00e+02 -9.00e+02 1.24e-04 3.20e-02 5.06e+02 5.80e+01 4.60e-01
truss8 496 628 * -1.33e+02 * * 9.97e+02 * 9.40e+00

Table 4.3: Benchmark Results for Solver

began to make progress, the resulting relaxations became dual infeasible. Al-

though this is bad, it is not unexpected due to round off error.

Fourth, the hinf bundle represents a series of control theory problems.

These problems are very difficult because they border on the edge of infeasi-

bility. With regards to this method, the majority of the problems eventually

produced relaxations that were dual infeasible.

Fifth, the mcp set is a series of max cut problems. The solver per-

formed very well even as the problems became large. In particular, the con-

straints that insure that the diagonal elements of Z remain positive enhanced

performance. However, the solver took almost 800 times longer to reduce the

fourth DIMACS error measure from .1 to .01.

37

Sixth, the qap set describes a series of quadratic assignment problems.

The method made no progress toward a solution on this set.

Seventh, the ss problem is a single truss topology design problem.

The method performed extremely well and actually significantly outperformed

CSDP. Although, it should be noted that the method could not produce results

as accurately as CSDP.

Eighth, the theta set expresses a group of Lovasz theta problems.

Although the algorithm was able to solve theta1, it took an extremely long

time. Further, the method did not make any progress on the other theta

problems other than the initial change in the objective value due to insuring

the diagonal elements of Z remain positive.

Finally, the truss problems outline an assortment of truss topology de-

sign problems. The method’s performance on these problems is a little strange.

The method could successfully solve smaller problems such as truss1, truss3,

and truss4, but not others such as truss2. Further, it could not make progress

on problems such as truss5, truss6, and truss8, but it was able to solve truss7.

CHAPTER 5

CONCLUSIONS

5.1 Introduction

The cutting plane method possesses many interesting properties and

implementation opportunities. The following section will discuss these features

and recommendations for the future.

5.2 Unique Properties

Unlike interior point methods, this algorithm produces a series of

solutions where five of six DIMACS errors are identically zero. So, it remains

a useful tool to generate a sequence of strictly primal feasible solutions that

approach optimality. Although the dual solution is typically infeasible with

respect to the semidefiniteness constraint, there may exist problems where this

drawback is inconsequential.

Each iteration of the algorithm requires a linear program to be solved.

Further, the solution of the resulting linear program differs only slightly from

the solution at the previous step. So, the method may take advantage of the

maturity of existing linear programming solvers and their ability to efficiently

warm start using the simplex method.

The method uses far less memory than existing primal-dual codes. As

an example, CSDP 4.7 requires approximately 8(13n2 + m2) bytes of memory

38

39

when each Ai is sufficiently sparse. If we make a similar assumption, this

method only stores Z and the constraint matrix. So, it needs approximately

8(n2 + mp) bytes of storage where p is the number of constraints. Although p

varies, experimental results demonstrate that it is bounded and typically does

not exceed 2n.

5.3 Performance

The performance of this algorithm is lacking. In comparison with

CSDP, it is far, far slower on almost all problems. However, there do exist

situations where this method is effective. For example, it provides fast solutions

to both the mcp and ss problems in SDPLIB.

Our current implementation is limited by the speed with which con-

straints are created. It is possible to eliminate this limitation and improve the

speed of the solver. Currently, memory is dynamically allocated whenever the

implementation creates a series of new constraints. This conserves memory

since the number of constraints varies dynamically with the eigenvalue struc-

ture of Z. However, the time necessary to allocate this memory exceeds the

computational requirements of the constraints. A faster implementation would

statically allocate all memory during initialization.

The solver has numerical difficulties with the hinf and gpp problems.

The hinf problems give almost all solvers difficulty since the optimal solutions

are on the edge of infeasibility. So, it is unsurprising that these problems caused

numerical difficulties. However, the gpp problems should not be difficult to

solve. This suggests that the method may be numerically unstable on some

40

problems.

It is very difficult for the solver to produce dual feasible solutions.

For example, our benchmarks require that the fourth DIMACS error measure

be less than .1 before the solver converges. If we change this requirement to be

.01, the mcp problems take 800 times longer to converge. If we use the same

requirement when solving control2, the solver will produce an objective value

with a relative error of 10−8 before it produces a dual feasible solution.

5.4 Final Conclusions

We have analyzed the algorithmic and computational properties of

this cutting plane method. Although improvements can be made to the exist-

ing implementation, experimental results suggest that this method will not be

competitive with interior point methods.

REFERENCES

E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen.
LAPACK Users’ Guide. Society for Industrial and Applied Mathematics,
Philadelphia, PA, third edition, 1999.

R. Bellman and K. Fan. On systems of linear inequalities in hermitian ma-
trix variables. In Proceedings of Symposia in Pure Mathematics, volume 7.
AMS, 1963.

Steven J. Benson. Parallel computing on semidefinite programs. Work for
Argonne National Laboratory, 2003.

Steven J. Benson and Yinyu Ye. DSDP4-a software package implementing
the dual-scaling algorithm for semidefinite programming, 2002. Technical
Report ANL/MCS-TM-255.

Brian Borchers. CSDP, a C library for semidefinite programming. Optimization
Methods and Software 11, pages 613–623, 1999.

Brian Borchers. SDPLIB 1.2, a library of semidefinite programming test prob-
lems. Optimization Methods and Software, 11(1):683–690, 1999.

S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear Matrix In-
equalities in System and Control Theory. Society for Industrial & Applied
Mathematics, 1994.

Vasek Chvatal. Linear Programming. W. H. Freeman and Company, 1983.

G.B. Dantzig. Programming in a linear structure. USAF, Washington D.C.,
1948.

Etienne de Klerk. Aspects of Semidefinite Programming. Kluwer Academic
Publishers, 2002.

Inderjit Singh Dhillon. A New O(N2) Algorithm for the Symmetric Tridiago-
nal Eigenvalue/Eigenvector Problem. PhD thesis, University of California,
Berkeley, 1998.

41

K. Fujisawa and M. Kojima. SDPA(semidefinite programming algorithm) :
User’s manual, 1995.

K. Fujisawa and M. Kojima. SDPARA (semidefinite programming algorithm
parallel version), November 2002.

M. X. Goemans. Semidefinite programming in combinatorial optimization.
Mathematical Programming, 79:143–161, 1997.

C. Helmberg, F. Rendl, R. J. Vanderbei, and H. Wolkowicz. An interior point
method for semidefinite programming. SIAM Journal on Optimization,
pages 342–361, 1996.

N. K. Karmarkar. A new polynomial-time algorithm for linear programming.
Combinatorica, 4:373–395, 1984.

L.G. Khachian. A polynomial algorithm in linear programming. Soviet Math.
Dokl., 20:191–194, 1979. Translated from Russian.

Michal Kocvara and Michael Stingl. PENNON a code for convex nonlinear and
semidefinite programming. Optimization Methods and Software, 18(3):317–
333, 2003.

Kartik Krishnan and John E. Mitchell. Properties of a cutting plane method
for semidefinite programming. Submitted for Publication, May 2003.

Robin Lougee-Heimer. The Common Optimization INterface for Operations
Research: Promoting open-source software in the operations research com-
munity. IBM Journal of Research and Development, 47(1):57–66, 2003.

Andrew Makhorin. GNU linear programming kit, May 2003. Software.

Hans Mittleman. An independent benchmarking of SDP and SOCP solvers,
2002.

Stephen G. Nash and Ariela Sofer. Linear and Nonlinear Programming.
McGraw-Hill Companies, Inc., 1996.

Kartik Krishnan Sivaramakrishnan. Linear Programming Approaches to
Semidefinite Programming Problems. PhD thesis, Rensselaer Polytechnic
Institute, June 2002.

42

K. C. Toh, M. J. Todd, and R. Tutuncu. SDPT3–a matlab software package for
semidefinite programming. Optimization Methods and Software, 11:545–
581, 1999.

R. Clint Whaley, Antoine Petitet, and Jack J. Dongarra. Automated
empirical optimization of software and the ATLAS project. Par-
allel Computing, 27(1-2):3–35, 2001. Also available as University
of Tennessee LAPACK Working Note #147, UT-CS-00-448, 2000
(www.netlib.org/lapack/lawns/lawn147.ps).

Henry Wolkowicz, Romesh Saigal, and Lieven Vandenberghe, editors. Handbook
of Semidefinite Programming. Kluwer Academic Publishers, 2000.

43

GLOSSARY

Sm×n Set of all m × n real symmetric matrices.

3 Such that.

<++ All non-negative reals.

<m×n Set of all m × n real matrices.

A • B = tr(ABT) Frobenius inner product between matrices.

I The identity matrix

X � 0 X is positive definite.

X � 0 X is positive semidefinite.

active constraint An inequality constraint of the form a(•) ≥ b where a(x) = b.

barrier function A function that approaches infinity as solutions approach the

edge of the feasible region.

central cut A new constraint that passes through the current feasible solution.

central path An analytical curve through the center of the feasible region.

deep cut A new constraint that excludes the current feasible solution from the

new feasible set.

density Proportion of nonzero entries in a matrix.

duality gap The difference between the primal and dual objective values of

primal and dual feasible solutions.

44

45

feasible A feasible point satisfies the given constraints.

FONC First Order Necessary Conditions

inactive constraint A constraint that is not active.

infeasible A point that is not feasible.

line search A search either for feasibility or for optimality along a line.

LP Linear Program

monotone A function that is nonincreasing or nondecreasing

objective function The function being optimized.

optimal solution A feasible point where the objective function is optimized

optimal value The value of the objective function evaluated at the optimal

solution.

positive definite A matrix is positive definite when dT Xd > 0 for all d 6= 0

positive semidefinite A matrix is positive semidefinite when dT Xd ≥ 0 for all

d

redundant constraint A constraint that does not affect the feasible region.

SDP Semidefinite Program

shallow cut A new constraint that includes the current feasible solution in the

new feasible set.

SIP Semiinfinite Program

slack variable If a constraint has the form a(x) ≥ b, then s = a(x)− b where s

is the slack variable.

46

strictly feasible A strictly feasible point strictly satisfies the given constraints.

unbounded A problem is unbounded if the objective function may approach

infinity when maximizing or negative infinity when minimizing.

