
RICE UNIVERSITY

Program Analysis and Transformation in Mathematical Programming

by

Joseph G. Young

A THESIS SUBMITTED
IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE

Doctor of Philosophy

A, T C:

Dr. Yin Zhang, Professor
Computational and Applied Mathematics

Dr. Mike Fagan, Researcher
Computer Science

Dr. Richard Tapia, University Professor
Computational and Applied Mathematics

Dr. David Gay, Principal Member
of Technical Staff

Sandia National Laboratory

Dr. Keith Cooper, Professor
Computer Science

H, T

M 2008

Abstract

Over the years, mathematical models have become increasingly complex. Rarely can we

accurately model a process using only linear or quadratic functions. Instead, we must

employ complicated routines written in some programming language. At the same time,

most algorithms rely on the ability to exploit structural features within a model. Thus, our

ability to compute with a model directly relates to our ability to analyze it.

Mathematical programs exemplify these difficult modeling issues. Our desire to accu-

rately model a process is mediated by our ability to solve theresulting problem. Nonethe-

less, many problems contain hidden structural features that, when identified, allow us to

transform the problem into a more computable form. Thus, we must develop methods that

not only recognize these hidden features, but exploit them by transforming one problem

formulation into another.

We present a new domain specific language for mathematical programming. The goal

of this language is to develop a system of techniques that allow us to automatically deter-

mine the structure of a problem then transform it into a more desirable form. Our technical

contribution to this area includes the grammar, type system, and semantics of such a lan-

guage. Then, we use these tools to develop a series of transformations that manipulate the

mathematical model.

Acknowledgments

I would like to begin by thanking Dr. Walid Taha for his assistance. Dr. Taha introduced

me to the type-centric approach of designing computer languages. His assistance allowed

me to properly frame my problem and it strengthened my resolve to see this project to

completion.

I give my deepest possible gratitude to Dr. Mike Fagan. Dr. Fagan helped me under-

stand many key underlying properties of computer languages. He guided the transforma-

tion of my design from one that was intractable into another that was clear and practical.

Most importantly, he provided invaluable assistance during many difficult and challenging

moments of my research.

I would like to thank my adviser Dr. Yin Zhang. Dr. Zhang helped me in an innumer-

able number of ways during my tenure at Rice. His tutelage expanded my mathematical

knowledge and profoundly influenced my understanding and perception of mathematical

programs.

I am indebted to my departmental chair Dr. Dan Sorensen. Dr. Sorensen provided

invaluable advice during the trials of graduate study. His administrative acumen helped

insure my success.

I extend my loving gratitude to my parents John and Jewell andmy brothers Daniel

and Joshua. Dad taught me the importance of resolve while traversing turbulent waters.

Mom demonstrated that a small, but formidable voice can result in an unlikely executive

decision. Daniel provided a voice of reason when I began to wade into a hazardous mire.

Joshua showed me the importance of a silver-tongue.

Finally, I would like to thank my friend Steve for teaching meto work under pressure.

I would also like to thank my friends John, Lena, and Jenniferfor appreciating the gravity

of my challenges and their valuable advice on how to persevere.

Contents

1 Introduction 1
1.1 General Purpose Routines .. 2
1.2 Transformation . 3
1.3 Analysis . 6
1.4 Overview . 9

2 History 11
2.1 Optimization . 11
2.2 Mathematical Modeling .14
2.3 Semantics . 17
2.4 Type Systems . 19

3 Grammar 22
3.1 Preliminaries . 22
3.2 Formal Definition . 24

4 Type System 30
4.1 Preliminaries . 30
4.2 Formal Definition . 31
4.3 Builtin Functions and Their Type 34

4.3.1 Scalar Functions . 34
4.3.2 Matrix Functions . 45

5 Semantics 57
5.1 Preliminaries . 57

5.1.1 Denotational Semantics . 58
5.1.2 Soundness and Completeness . 60
5.1.3 Convexity . 62
5.1.4 Polynomality . 62
5.1.5 Monotonicity . 66
5.1.6 Relations . 66
5.1.7 Matrix Types . 72

5.2 Formal Definition . 73
5.3 Soundness and Completeness .. 82

i

6 Transformations 119
6.1 Absolute Value . 119
6.2 Expanding an Inequality .120
6.3 Expanding an Equality . 129
6.4 Contracting a Single Auxiliary Variable and a Single Inequality 134
6.5 Contracting a Single Auxiliary Variable and a Single Equality 141
6.6 Binary Maximum . 144
6.7 Binary Minimum . 145
6.8 Elementwise Maximum . 146
6.9 Elementwise Minimum . 147
6.10 Summation . 148
6.11 Infinity-Norm . 149
6.12 One-Norm . 150
6.13 Two-Norm . 151
6.14 Maximum Eigenvalue . 154
6.15 Minimum Eigenvalue . 155
6.16 Convex Quadratics . 157
6.17 Non-Convex Quadratics .. 162
6.18 Symmetric Rank-1 Constraints 164
6.19 ±1 Integer Variables . 166
6.20 Quartics . 168
6.21 Linearizing the Objective Function 170

7 Case Studies 172
7.1 Max-Cut . 173
7.2 Chained Singular Function .. 179
7.3 Type Checking . 192

8 Conclusions 194
8.1 Future Work . 196

Chapter 1

Introduction

Mathematical programming refers to a collection of formal methods used to model

and optimize a complicated process. These processes arise in many different settings such

as minimizing the operating cost of an airline[14] or describing the optimal layout of a

microprocessor[6]. The goal of solving these problems is tofind an optimal set of parame-

ters that characterize the original system.

Although there exist a wide variety of tools that can solve a mathematical program,

these tools rarely understand the model in its natural form.Manually transforming one

form to another is difficult and error prone. Therefore, most analysts use a modeling lan-

guage. Modeling languages allow a user to describe a problemin general terms. Then, this

description is converted into a form that the solver understands.

Once we model a problem, we still must choose which solver to use. The structure of

the problem predicates this decision. For example, when theproblem contains only linear

functions, we may use a solver built upon the simplex method.A different problem may

necessitate a different solver. This decision becomes more difficult when these structural

components are not explicit. Frequently, we must transformone formulation to another in

1

order to take advantage of certain properties.

This problem becomes more challenging when we model our process with a general

purpose code such as C. In this case, the mathematical properties of the routine are well

hidden. As a result, we may be forced to use less powerful algorithms than what the prob-

lem dictates. Alternatively, we may be forced to transform the routine into some auxiliary

form by hand.

As a result, we must develop the capacity to automatically analyze a general purpose

routine. Then, we can transform the result into an alternative form. Of course, this is a very

difficult goal. Thus, as a first step, we can instead develop and apply the same sort of tools

and techniques to a modeling language. Simply, modeling languages represent a restricted

subclass within general purpose routines.

We propose a new domain specific language for mathematical programming. The core

of this research lies within two areas: clear, concise semantics that accurately represent a

mathematical program and a rich type system that allows us toascertain the mathematical

properties of a particular problem instance. Based on this foundation, we define a series of

transformations and prove their correctness.

1.1 General Purpose Routines

When we refer to the analysis of a general purpose routine, wemean the following.

Consider the C function

double linear(double *x){

2

double y=0.;

int i=0;

for(i=0;i<=5;i++)

y+=i*x[i];

return y;

}

Certainly, this routine is equivalent to the functionx 7→ x1 + 2x2 + 3x3 + 4x4 + 5x5. Thus,

we see the routine represents a nice, linear function. Yet, virtually all linear programming

solvers can not understand this form. Even if a solver could call this routine, it can not

guarantee its linearity.

Ultimately, we wish to communicate this information to a solver. When a solver does

not understand this form, we want to transform the problem into one the solver does. How-

ever, for the time being, we focus our efforts toward modeling languages. This same situa-

tion occurs albeit in a different form within these languages.

1.2 Transformation

Transformations provide us one powerful technique for taking advantage of structure.

In the simplest possible case, let us consider a problem of the form

min
x∈�

ax st bx≥ |x|

3

This problem is almost linear, but the constraint contains anonlinear, nondifferentiable

term, |x|. If we recall the definition of absolute value, this constraint states thatbx ≥

max(x,−x). However, whenbx is greater than the maximum of bothx and−x, it must be

greater than both terms separately. This allows us to reformulate the problem into

min
x∈�

ax st bx≥ x

bx≥ −x

In this new problem, all functions are linear. Therefore, wecan employ much more pow-

erful algorithms to solve this formulation than the first. Now, we may question whether we

need a computer tool to convert the constraintbx≥ |x| into bx≥ x andbx≥ −x. Certainly,

we can easily recognize and manipulate this constraint by hand. However, in many cases

this situation is less clear.

Let us consider the max-cut problem from graph theory. Consider a graph whose edges

contain nonnegative weights. When two nodes are disconnected, we assume an edge exists

with weight zero. For example, the following diagram denotes a suitable graph

1

2
3

8

5

6

9

4
7

10

The goal of the max-cut problem is to divide the nodes of a graph into two sets such that

we maximize the sum of the weights that pass between the two sets. Using the same graph

4

as above, the following denotes a partition

1

2
3

8

5

6

9

4
7

10

The weight of this cut is 41. In order to model this problem, label each node in the graph

with a unique index. Then, letwi j denote the weight of an edge that connects nodei to node

j. This allows us to model the problem as

max
x∈{−1,1}n

1
4

∑

i j

(1− xi xj)wi j

The designation ofxi as 1 or−1 denotes whether nodei belongs to the first or second set.

Notice that whenxi and xj have the same sign, the term 1− xi xj = 0 andwi j does not

contribute to the weight of the cut. When we want an upper bound on the solution, we can

alternatively solve the following semidefinite program

max
x∈�n,X∈Sn

1
4tr(WX) + 1

4tr(WE)

st Xii = 1






























1 xT

x X































� 0

whereWi j = wi j and E denotes the matrix of all ones. Since this problem is nice and

5

convex, it is vastly easier to solve than the first. However, this representation looks nothing

like the original problem. In fact, it provides no indication that it is related to a max-cut

problem at all. Nevertheless, there exists an intimate connection between the two and it is

possible to derive the second formulation from the first in a mechanical fashion.

This example highlights two difficulties that arise during modeling. First, an algebraic

model should be correspond closely to the specification of the problem. This helps us

easily spot and diagnose problems in the original formulation. Second, any change the

original problem necessitates a change to the reformulation. When the reformulation from

one problem to another is complicated, filtering through anychanges can be difficult.

1.3 Analysis

In many cases, identifying structural features requires more work. In the following

example, we discuss the automated transformation of a constraint containing the chained

singular function[20]

c(x) =
∑

i∈J
(xi + 10xi+1)

2 + 5(xi+2 − xi+3)
2 + (xi+1 − 2xi+2)

4 + 10(xi − 10xi+3)
4

whereJ = {1, 5, . . . , n−3} andn is a multiple of 4. It is known that a constraint of the form

y ≥ c(x) can be transformed into a second-order cone constraint[51]. Let us investigate one

possible reformulation.

6

In the most simple case, we have a constraint of the form

y ≥ (x1 + 10x2)
2 + 5(x3 − x4)

2 + (x2 − 2x3)
4 + 10(x1 − 10x4)

4

By introducing two auxiliary variables, we can reformulatethis constraint into

y ≥ (x1 + 10x2)
2 + 5(x3 − x4)

2 + u+ v

u ≥ (x2 − 2x3)
4

v ≥ 10(x1 − 10x4)
4

Now, since the square of any real number is positive, we can further expand this system

into

y ≥ (x1 + 10x2)
2 + 5(x3 − x4)

2 + u+ v

u ≥ s2

s≥ (x2 − 2x3)
2

v ≥ t2

t ≥ 10(x1 − 10x4)
2

At this point we notice that the variablesu andv serve mostly as place holders. Thus, we

7

can simplify this system slightly into

y ≥ (x1 + 10x2)
2 + 5(x3 − x4)

2 + s2 + t2

s≥ (x2 − 2x3)
2

t ≥ 10(x1 − 10x4)
2

Before we continue, let us consider a transformation commonto convex cone program-

ming. Consider a constraint of the form

0 ≥ xTATAx+ aT x+ α

Through clever manipulation, we can reformulate the constraint into



















































1− cT x− γ

2Ax

1+ cT x+ γ



















































�Q 0

where�Q represents the partial order defined by the second-order cone. In other words,

we can transform a convex quadratic constraint into a second-order cone constraint. This

new formulation is desirable since it allows us to employ special algorithms designed for

second-order cone programs.

8

Now, let us return to our original problem. It turns out that each of the constraints

y ≥ (x1 + 10x2)
2 + 5(x3 − x4)

2 + s2 + t2

s≥ (x2 − 2x3)
2

t ≥ 10(x1 − 10x4)
2

is both convex and quadratic. Therefore, we can reformulatethem into second-order cone

constraints. However, they do not possess the nice canonical form

0 ≥ xTATAx+ aT x+ α

Certainly, we should not constrain the user to this representation. Further, we claim it is

unreasonable to even ask them to prove whether a function is convex or quadratic. It is a

property that may be difficult to determine. As a result, we must analyze and determine

this property automatically.

1.4 Overview

Our solution to these problems lies in the design of a new modeling language. The de-

sign consists of four separate parts: grammar, type system,semantics, and transformations.

The grammar specifies the internal structure of a mathematical program. For example,

we specify that all problems must begin with the keywordmin followed by the objective

function. The objective function must be followed by the keyword over followed by vari-

9

ables, etc. While this specification is rigid, it serves as ananalytic vessel. Thus, the user

may specify a problem in a much friendlier syntax.

Next, we define a type system. The type system serves two purposes. First, it insures

that a mathematical program is well-formed. In other words,it prevents absurd statements

such asy ≥ xu≥v. Second, we use the type system to assert properties about our problem.

This is how we determine whether a function is convex, a polynomial, or monotonic.

Once we define the type system, we specify the semantics of ourlanguage. Up until

this point, we essentially define a series of rules that manipulate grammar. The semantics

assign an unambiguous mathematical meaning to this grammar. Once we define this mean-

ing, we prove that our system is consistent. In other words, we prove that all well-typed

programs correspond to actual mathematical programs. We also prove that when our type

system asserts a certain property such as convexity, this property must hold . This gives us

confidence that our design is correct.

Finally, we use this machinery to design a series of transformations. Each transforma-

tion maps one piece of grammar to another. Then, we use the semantics to prove that this

reformulation is correct. Although their are an innumerable number of possible transfor-

mations, we focus on those necessary to reformulate our examples above. This provides

good balance of transformations that reformulate convex and nonconvex problems.

10

Chapter 2

History

The study of modeling languages for optimization combines research from optimiza-

tion, mathematical modeling, semantics, and type systems.As each of these areas possesses

its own unique history, we do not provide a comprehensive chronicle of their results. In-

stead, we summarize many of the important developments of each area and highlights how

these ideas intersect.

2.1 Optimization

Modern methods for computational optimization originatedin 1947 with George Dantzig

[25, 26]. At the time, Dantzig was tasked with solving transportation problems for the Air-

force. These problems required a scheduler to optimize a linear objective function bounded

by linear constraints. In order to solve this problem more efficiently, Dantzig developed an

algorithm called the simplex method. The simplex method finds the solution of a linear pro-

gram by traversing the vertices of the feasible region. Although the algorithm is combina-

torial in nature and may run in exponential time, the algorithm finds a solution very quickly

in practice. To this day, it remains one of the most importantalgorithms to solve linear

11

programs. It is implemented by many high performance packages such as CPLEX[12].

Since the simplex method relies on the structure of a linear program, it is not well-

suited toward nonlinear programming. Thus, algorithms that solve nonlinear programs de-

veloped relatively independently from linear programming. The conditions for optimality

of a constrained nonlinear program were developed by Karushin 1939 during his Masters

thesis[47]. Khuhn and Tucker rediscovered this result in 1951[52]. Later, these conditions

became known as the KKT conditions. This work was pivotal since it characterized con-

ditions for optimality as a system of nonlinear equations that could be solved using New-

ton’s method. During the 1960’s, penalty and barrier methods became popular[31], but

fell out favor since they lacked numerical stability. During the 1970’s, sequential quadratic

programming[74, 38, 13] and augmented lagrangian methods[43] were developed and they

remain popular to this day. However, one of the most important developments in optimiza-

tion history came during the 1980’s with the interior point revolution[75].

In 1979 Khachian developed the ellipsoid method for linear programming[48]. It was

the first algorithm developed that solved a linear program inpolynomial time. It differed

from the simplex method since it generalized ideas from nonlinear programming and did

not rely the the combinatorial nature of the feasible region. Unfortunately, the algorithm

did not perform well in practice and fell out of favor. In 1984, Karmarkar announced a new

polynomial time algorithm for linear programming[46] thatwas far more efficient than the

simplex method in practice. Although details of his work remained absent at the time,

his algorithm was later shown to be equivalent to a logarithmic barrier function applied

12

to a linear program[39]. In practice, the algorithm was efficient, but not as revolutionary

as originally announced. Nevertheless, it was a very important discovery since it began

the unification between the theory of linear and nonlinear programming. Algorithms that

used this new approach became known as interior point methods. Since the 1980’s, inte-

rior point methods became an important and popular method for both linear and nonlinear

programming.

In 1988 Nesterov and Nemirovski proved that polynomial-time algorithms could be

extended to convex programs[60]. This led to the study of semidefinite and second-order

cone programs during the 1990’s[72]. This work was significant since it was the first time

an efficient algorithm existed that found the global solution of a broad class of nonlin-

ear programs outside of geometric programming[29, 28, 30].In fact, as these algorithms

became more mature, the distinction between linear and nonlinear programming became

less pronounced. Instead, it became useful to distinguish between convex and nonconvex

programs.

Although convex programs can be solved in polynomial time, efficient solvers based

on this theory have only been realized for linear, second-order cone, and semidefinite pro-

grams. Although many high quality solvers exist for linear and semidefinite programming

[15, 71, 36, 8, 69], only two can additionally solve second-order cone programs. As an

alternative approach, some solvers can solve general convex programs very quickly us-

ing specialized algorithms from nonlinear programming[1], but generally can not represent

matrix constraints necessary for semidefinite programming.

13

2.2 Mathematical Modeling

As algorithms to solve optimization problems evolved, so did the technology to rep-

resent them. Prior to the 1970’s, interfacing to solvers waslargely problem and solver

dependent. In the late 1970’s and early 1980’s MPS files became the standard format to

represent problems. MPS files store a problem using well-defined, very rigorous format.

Since the format was not designed to create problems by hand,another application called a

matrix generator[7] was needed to create an MPS file. Frequently, matrix generators were

custom Fortran programs.

In the late 1970’s, the World Bank funded the development of an algebraic modeling

language for optimization called GAMS[11, 17]. This approach differed from that of matrix

generators since it allowed a mathematical model to be represented in its algebraic form at a

very high level[32]. It also allowed users to represent their problem over sets of data rather

than rigidly defined indices. This improved the model’s readability and reliability. Over

the years, GAMS continued to evolve as it incorporated additional algebraic structures. It

remains one of the more popular modeling languages.

In the early 1980’s, Bell Labs became interested in small specialized programming

languages for specific applications. After Karmarkar made his announcement of a new

polynomial time algorithm for linear programming, David Gay, Bob Fourer, and Brian

Kernighan began work on a language called AMPL[33, 34]. Similar to GAMS, the goal of

AMPL was to provide a high-level algebraic description of a problem. A key feature of this

was a flexible approach to defining sets of data. As AMPL developed, it supported many

14

new features such as stochastic programming. It remains a popular tool to this day.

In 1989, Peter Piela developed a new object-oriented, strongly typed modeling language

for chemical processes called ASCEND[62]. Piela was partlymotivated by the lack of

formal semantics in modeling languages such as GAMS. Later,this led to the formal study

of ASCEND’s semantics by Bhargava, Krishnan, and Piela[9, 10]. ASCEND’s design lies

in stark contrast to most available modeling languages. It remains one of the only modeling

languages formally designed, studied, and still used.

In 1990, Fernando Vicuna became the first person to develop formal semantics for a

modeling language[73]. During his thesis, he cited inconsistencies in the semantics of

GAMS, LINGO, and AMPL. Motivated by these problems, he developed the formal se-

mantics of a modeling language called SML using attributed grammars. While the lan-

guage SML never became popular, this work remains importantsince it demonstrated the

necessity and utility of formal techniques applied to the design of a modeling language.

Although Vicuna and Bhargava et al. were the first to study thesemantics of modeling

languages, they were not the last. In 1994, Neustadter analyzed the semantics of what

he termed executable modeling languages[61]. This encapsulated any algebraic modeling

language processed by a computer. In 1995, Hong and Mannino studied the denotational

semantics of the Unified Modeling Language,LU[44]. This work was notable since it was

the first time the denotational style of semantics was applied to a modeling language.

In 1994, Gahinet, Nemirovskii, Laub, and Chilali developedthe LMI toolbox[37]. The

toolbox was implemented as an object oriented library inside of MATLAB. Up until this

15

point, there was no tool available that allowed the algebraic formulation of a semidefinite

program. In addition to the modeling utility, the toolbox came packaged with a solver

based on Nemirovskii and Gahinet’s projective algorithm[59]. Unfortunately, the solutions

produced by the solver were extremely poor. Therefore, the toolbox fell out of favor once

alternative solvers became available.

In 2001, Johan Löfberg developed a MATLAB modeling tool called YALMIP[56].

Originally, it was designed to allow the algebraic specification of linear matrix inequali-

ties. Later, it was extended to model a broad class of optimization problems. Unlike, the

LMI toolbox, YALMIP was not tied to a particular solver. Thisled to a much larger user

base than the LMI toolbox.

In 2005, Michael Grant developed a new language called CVX during his dissertation

at Stanford[41, 42]. Although YALMIP could model convex cone programs, formulating

them was often difficult. Frequently, a cone program was created by reformulating a non-

linear program. CVX automated many of these transformations. Michael advocated an idea

called disciplined convex programming. In this approach, new models are created from a

toolbox of functions that are known to be convex. These functions are manipulated by a

series of transformations that are known to preserve convexity. His ideas were realized in

a MATLAB toolbox. Subsequently, YALMIP incorporated many of these techniques.

16

2.3 Semantics

The term semantics embodies three separate, but related fields in linguistics, logic, and

computer science. In each case, the goal of semantics is to assign meaning to some object.

In linguistics, the goal is to assign meaning to spoken language[16]. In logic, foundational

questions are asked about meaning of truth. In computer science, meaning is assigned to a

piece of code.

The semantics of logic originated in article by Frege[35] written in 1892. Frege dis-

cussed how the statementa = b differed from that ofa = a. In order to analyze this

question, he differentiated between the sense of a statement and its nominatum. Although

the nominatum of sentence could be defined in many different ways, he argued the correct

definition was the statement’s truth value. Then, he reducedthe question to whether one

sentence could be replaced with another. He concluded that even if two statements had the

same truth value, if they differed in sense, they were not the same. Therefore, the statement

a = b was not equivalent toa = a even whena andb possessed the same truth value.

Later, Tarski considered the semantic meaning of truth[70]. In his discussion, he ana-

lyzed the liar’s paradox, ”This statement is false.” He argued the paradox arose because it

was posed in a semantically closed language. A semanticallyclosed language contained, in

addition to its expressions, the names of the expressions aswell as the concept of truth. In

this way, a sentence could refer to the truth of itself. To resolve this antinomy, he employed

two separate languages: the object language and the meta-language. The object language

was the language under discussion. The meta-language was the language used to talk about

17

the first. In this framework, the liar’s paradox could not be posed.

The formal semantics of computer languages arose out of necessity. In 1960, the re-

port for Algol 60 was first published[3]. The language introduced many new features, but

the semantics were given in prose. As a result, there existedmany ambiguities in the de-

sign. Later, a revised report was published in an attempt to resolve these ambiguities[4].

Even after the revised report, many problems still existed[50]. It became clear, that formal

methods were necessary to specify the semantics of a language.

In 1964, Landin noticed a many similarities between lambda calculus and programming

languages[53]. Later, he commented more specifically aboutthe similarities with Algol[54,

55]. He postulated that the semantics of Algol 60 could be specified by lambda calculus.

In essence, the discussion of semantics would be reduced to describing the object language

by the meta-language. This idea influenced the design of manyother languages such as

PL/I[57].

In 1971, Scott and Strachley reconsidered the use of lambda calculus as a meta-language

[67, 66, 68]. Although lambda calculus provided a relatively clear semantics, they viewed

it as an operational calculus rather than a mathematical semantics. Instead, they defined a

series of rigorously defined domains. These domains included both syntax and mathemati-

cal objects. Then, they defined a set of functions that mappedone domain to another. These

functions mapped a piece of syntax to its meaning. By restricting themselves to partially or-

dered domains that contained a bottom element and monotonic, continuous functions, they

could model even non-terminating, recursive functions. Their work formed the foundation

18

of denotational semantics.

In 1985, Cousineau, Curien, and Mauny developed a new kind ofdenotational seman-

tics for languages based on lambda calculus[22]. They noticed that cartesian closed cat-

egories provided the correct framework for modeling lambdacalculus. As a result, they

could map a program to a category. A morphism in the category could be thought of as

a series of commands executed by a compiler. This led to the development of the OCaml

programming language[58, 2, 63].

2.4 Type Systems

The theory of types originated when Bertrand Russell proposed a paradox within the

framework of Frege’s set theory[64, 65]. He found that the set of all sets that do not

contain themselves led to a contradiction. In order to solvethis antinomy, he proposed a

hierarchy of propositional functions. The lowest level contained propositions that did not

contain variables. These were called elementary propositions or individuals. The next level

contained propositions whose variables ranged over terms in the level below. In this way,

he avoided what he termed the, ”vicious-circle principle.”

In 1932, Church introduced lambda calculus as a new formal system of logic that

aimed to avoid Russell’s paradox[18]. Instead of using types, he divorced the law of ex-

cluded middle. He contended that this law led to Russell’s and other paradoxes. Later,

Church’s students proved that this system was inconsistentas it was suffered from a vari-

ant of Richard’s paradox[49]. Despite this difficulty, the system proved to be surprisingly

19

expressive. In 1940, Church incorporated type theory into lambda calculus which led to a

consistent theory[19].

In 1936, Curry discovered a connection between types assignable to combinators and

logical implications[23]. This connection was clarified ina paper published in 1942[24].

As the link between combinatory logic and lambda calculus became clear, this meant there

was a direction connection between a program written in lambda calculus and a mathemat-

ical proof. This idea became known as the Curry-Howard correspondence[45].

Types were intimately connected to programming languages from their inception. When

Fortran was designed, it contained only two types: integersand floating point numbers[5].

At the time, programmers used these types for performance rather than correctness reasons.

Subsequent programming languages such as Algol and Pascal used types as a way to elim-

inate common programming errors. Certainly, these languages introduced many additional

kinds of types such as characters or structures. However, fundamentally these types were

relatively primitive.

Gordon, Milner, and Wadsworth introduced a new language called ML in 1979[40]. By

this point, the connection of lambda calculus to programming languages was clear. Thus,

there was great interest in creating languages suitable forproving theorems. As such, ML

included a much richer variety of types such as universal quantifiers and arrow types. In

addition, it did not require explicit type annotations as itwas able to infer type information

by employing the Hindley-Milner type inference algorithm.Originally intended for use

with the proof system LCF[40], ML and its variants also formed the foundation for the

20

systems NuPRL[21] and Coq[27].

21

Chapter 3

Grammar

While we understand mathematical programming and transformations in mathematical

terms, our goal is to rigorously develop a blueprint for a newlanguage. We begin by

developing the grammar of the language. The grammar defines how the language should

look. For example, we can stipulate that all mathematical programs must start with either

min or maxfollowed by a function. In addition to developing grammar for the language,

we must also develop grammar for a system of types. Types represent properties that an

expression may possess. For example, the statement 1+ 2 has type integer which asserts

that the expression must evaluate to an integer. While we develop the grammar for types

now, we discuss the rules that define the type system later.

3.1 Preliminaries

Generally, there are two kinds of grammar. The abstract syntax defines an internal

representation that is convenient for manipulating a program. The concrete syntax defines

what a programmer must actually type. Certainly, there is a link between the two, but we

focus on the abstract syntax. While this form may seem arcaneat times, it is important to

22

stress that a programmer is not restricted to using this syntax. The concrete syntax takes a

much friendlier form.

We define grammar using what is called Backus-Naur form (BNF). It is a notation that

inductively defines the structure of a language. For example, we define an extremely simple

calculator with the grammar

e ∈ E ::= c | f {e, e}

where{e, e} denotes a tuple of expressions. This states that an expression is either a constant

or a binary function. These functions can include algebraicoperations such as addition,

subtraction, multiplication, and division. It can also include logical operations such asor

andand. Using this grammar, we can define the program

+{∗{1, 2}, 3}

which we abbreviate as

1 ∗ 2+ 3

Notice that we did not build operator precedence into this definition. This is a detail built

into the concrete syntax, not the abstract.

Types also have grammar. For example, associated with the grammar above, we define

types

t ∈ T ::= � |�

23

In other words, every expression must be a boolean or an rational.

Finally, we must also define grammar for a device called a context. The context will

contain type information about each of the built-in functions. We define the grammar for

the context as

Γ ∈ G ::= { f : {t, t} → t}nj

where{}nj denotes a sequence of lengthn indexed byj. Using this grammar, we can define

the context

{ + : {�,�} → �,

− : {�,�} → �,

∗ : {�,�} → �,

/ : {�,�} → �,

and : {�,�} → �,

or : {�,�} → �}

The context becomes important during the definition of typing rules.

3.2 Formal Definition

We build our mathematical program from a series of model functions. Since the type

of these functions will be central to our understanding of the language, we present their

grammar first.

24

Convexity c∈ C ::= / | ⌢ | ⌣ | ⊥

Polynomality p∈ P ::=α | (α, a) | (α, a,A) | ⊥

Monotonicity m∈ M ::= – | ր | ց |⊥

Codomain o∈ O ::=� |� | {0, 1} | {−1, 1}

Symmetry y∈ Y ::= ‡ | ⊥

Types t∈ T ::= {〈c, p,m, o〉mn
i j , y} | η |^

Domain d∈ D ::= om×n | Sn

Function Context Γ ∈ G ::= { f : {t}mi → t}nj

Decision Variable Context Σ ∈ S ::= {x : d}ni

Our language determines whether a model function is convex,a polynomial, or monotonic.

We represent the convexity of a function as one of four possible cases. A function is either

affine, concave, convex, or something unknown. Similarly, we represent the polynomality

of a function as one of four possible cases. A function is either constant, linear, quadratic, or

something unknown. Notice that we not only determine whether a function is a low-order

polynomial, but we also determine the coefficients associated with the function. Next, we

represent the monotonicity of a function as one of four possible states. Either a function

is constant, increasing, decreasing, or something unknown. In addition, we determine the

codomain of each model function. The codomain must lie within the set of real, integer,

zero-one integer, or plus-minus one integer numbers. We combine all four of these proper-

ties into a single type〈c, p,m, o〉mn
i j which represents a matrix of the above properties of size

m×n indexed byi and j. Additionally, we determine whether the codomain of the resulting

25

matrix function is symmetric or unknown. This combined withthe naturals and constraints

form the types that expressions may inhabit. Next, the domain of each model function is

defined by the domain of the decision variables. This can be a matrix domain of any of the

above sets or a real symmetric matrix. Finally, we define two contexts. The first contains

the type of the predefined functions while the second contains the type of the decision vari-

ables. The syntax{x}ni denotes a sequence of elementsn long indexed byi. We define the

empty sequence by{} and the concatenation of two sequences as{x}mi , {y}nj . In addition, we

frequently omit indices when they are obvious. For example,
{

{〈c, p,m, o〉mn
i j , y}

}p

k
denotes a

list of model function types. The notationcki j denotes the (i, j)th convexity property of the

kth argument.

For example, let us consider the properties of the function

X ∈ �2×2, y ∈ �2 7→ Xy=































X11y1 + X12y2

X21y1 + X22y2































=































f1(x)

f2(x)































This function maps�2×2 × �2 to�2. Since the codomain is not square, the result can not

be symmetric. In addition, when we consider the functionsf1 and f2, we see that each

function is bilinear (quadratic), not convex, nor increasing. We represent these properties

with the type




























































(⊥, (α, a,A),⊥,�)

(⊥, (β, b, B),⊥,�)































,⊥































26

The variablesα, a, A, β, b, andB are defined by

α = 0 a =



















































































































0

0

0

0

0

0



















































































































A =



















































































































0 0 0 0 1/2 0

0 0 0 0 0 0

0 0 0 0 0 1/2

0 0 0 0 0 0

1/2 0 0 0 0 0

0 0 1/2 0 0 0



















































































































β = 0 b =



















































































































0

0

0

0

0

0



















































































































B =



















































































































0 0 0 0 0 0

0 0 0 0 1/2 0

0 0 0 0 0 0

0 0 0 0 0 1/2

0 1/2 0 0 0 0

0 0 0 1/2 0 0



















































































































Certainly, these types seem large and unwieldy. However, they give an extraordinary

amount of information about the function in question. We give the rules necessary to derive

the above type during the discussion of the type system.

The above types correspond to the terms

Mathematical Program n∈ N::=min e over Σ st {e}ni

Expressions e∈ E::=A | x | f {e}ni
A mathematical program is built from an expression, a list ofvariables, and a list of ex-

pressions. Expressions can take several forms. The metavariableA ranges over constants

27

while x ranges over variables. The application rule allows us to build new model func-

tions from existing ones. Notice that we don’t explicitly include many useful operations

such as subindexing or algebraic operations. Their functionality is subsumed by the ap-

plication rule. Also notice that this language does not include definitions for user defined

bindings or functions. These can be accomplished through macros. Their details are left as

an implementation detail.

For example, using our grammar, we can represent the following linear program

min + {x, y} over x : �1×1, y1×1 : � st ≥ {+{x, y}, 1}

In the following discussion, we abbreviate this using the more readable form

min x+ y over x : �, y : � st x+ y ≥ 1

Nonetheless, we see that this grammar can be used to represent a very broad class of non-

linear programs.

At this point, we must address a confusion of terms. In this context, we have two

different kinds of variables. In one sense, we have variables that represent abstract terms

in our language. For example, in the expressionx+ 1 we add the variablex to the constant

1. In another sense, we have decision variables that describe our solution. For example, in

the codemin x+1 over x : � st {}, x is a decision variable. In the following discussion, we

refer to the first kind as a variable. We refer to the second kind as a decision variable.

28

Similarly, we have two different kinds of functions. In one sense, we have functions that

map values to values in our language. For example,��+ {x, 1} represents the application of

the��+ function. In another sense, we have functions that are builtfrom decision variables.

For example, in the codemin x+ 1 over x : � st {}, x+ 1 is a function built from a single

decision variable. In fact, evenx represents a function, namelyx 7→ x. In the following

discussion, we will refer to the first kind as a function. We refer to the second kind as a

model function.

29

Chapter 4

Type System

The type system serves two purposes. First, it insures that aprogram is well formed.

For example, the statement 1+ truemay be grammatically correct, but a good type checker

should raise an error since we can not add an integer to a boolean. Second, it allows us to

constructively prove properties about a statement. For example, a type system can prove

that 1+ 1 is an integer. We use this idea to prove properties about thefunctions in a

mathematical program such as whether a function is convex.

4.1 Preliminaries

Continuing our simple calculator example from above, we define the following typing

rules

Γ ⊢ c : � (Boolean Constant)

Γ ⊢ c : � (Rational Constant)

Γ̂, f : {t1, t2} → t, Γ̂′ ⊢ f : {t1, t2} → t {Γ ⊢ e : t}2i
Γ ⊢ f {e1, e2} : t

(Application)

The first two rules state that the bindings inΓ prove that a constantc is either a boolean

or a rational. Of course, we assume that constants such astrue or f alseare boolean and

30

numbers are rational. The last rule states an implication. The conditions for this implication

reside on the top of the line while the result lies below. It states that when the context

contains a function with a particular signature and the arguments given two this function

match this signature, then we know the type of the resulting application.

As an example, using the context defined during the grammar preliminaries, we use the

application rule to show that 1+ 2 is rational

Γ̂,+ : {�,�} → �, Γ̂′ ⊢ + : {�,�} → � Γ ⊢ 1 : � Γ ⊢ 2 : �

Γ ⊢ 1+ 2 : �
(Add)

We combine these results to generate longer proofs. For example, in order to prove that

1+ 2+ 3 is rational, we have the following proof

Γ̂,+ : {�,�} → �, Γ̂′ ⊢ + : {�,�} → �

(Add)

Γ ⊢ 1+ 2 : � Γ ⊢ 3 : �

Γ ⊢ 1+ 2+ 3 : �

4.2 Formal Definition

The typing rules are described by

31

Mathematical Program Γ ⊢ n

Γ;Σ ⊢ e : 〈c, p,m,�〉 {Γ;Σ ⊢ ei : ^}ni
Γ ⊢ min e over Σ st {ei}ni

(Prog)

Expressions Γ;Σ ⊢ e : t

Γ;Σ ⊢ A : η (Index)

Γ;Σ ⊢ A : 〈/,A, –,�〉 (Scalar Const)

Γ;Σ ⊢ A :
{

〈/,Ai j , –,�〉mn
i j ,Y

}

(Matrix Const)

Γ;Σ, x : o1×1,Σ′ ⊢ x : 〈/, (0, eι(k,1,1)),ր, o〉 (Scalar Var)

Γ;Σ, x : om×n,Σ′ ⊢ x : {〈/, (0, eι(k,i, j)),ր, o)〉mn
i j ,⊥} (Matrix Var)

Γ;Σ, x : Sm,Σ′ ⊢ x : {〈/, (0, eι(k,i, j)),ր,�〉mm
i j , ‡} (Symmetric Var)

Γ̂, f : {t}mi → t, Γ̂′ ⊢ f : {t}mi → t {Γ;Σ ⊢ e : t}mi
Γ;Σ ⊢ f {e}mi : t

(App)

where we abbreviate〈c, p,m,�〉 for {〈c, p,m,�〉11
i j , ‡}. In addition, we specify thatY = ‡

whenA is symmetric and⊥ when it is not. Also, we defineeι(k,i, j) to be a vector of length

∑n
k=1 rkck whererk×ck denotes the size of each matrix in the contextΣ. This vector consists

of all zeros save a single 1 in theι(k, i, j)th position where we define

ι(k, i, j) = i + (j − 1)rk +

k−1
∑

p=1

rpcp

32

We refer to this vector as theι(k, i, j)th canonical vector. As a final note, we see that the

typing rules for constants and indices are ambiguous. This does not cause a problem since

the correct typing rule can always be determined from the context.

The typing rules of a mathematical program give insight intoits structure. Initially, each

mathematical program depends solely on a set of predefined functions whose type bindings

are found withinΓ. This context contains functions such as addition and subindexing. The

objective function and constraints are type checked in the rule (Prog). Here, we require

that objective be a model function and the constraints be well-typed. The typing rules

for constants and variable lookups mirror those found within lambda-calculus. However,

variable lookups appear slightly strange. In this case, each variable can be treated as a

function of itself with the appropriate properties. For example, the above rules would prove

the following

Γ; x : �2×2, y : �1×1 ⊢ y :































































































〈

/,





























































































0,





























































































0

0

0

0

1

























































































































































































,ր,�
〉

, ‡































































































In other words,y is a function that is linear inx andy.

The following Hasse diagrams detail the subtype relationships for convexity, mono-

tonicity, polynomality, and sets. In the diagram, elementson the top of the graph are

subtypes of those connected below.

33

Convexity
/

⌢ ⌣

⊥

Monotonicity
–

ր ց

⊥

Polynomality
α

(α, a)

(α, a,A)

⊥

Domains
{0, 1}m×n {−1, 1}m×n

�m×nSn

�m×n

Codomains
{0, 1}{−1, 1}

�

�

Two composite types,{〈c, p,m, o〉mn
i j , y}, are considered subtypes of each other when their

sizes,m andn, are the same and each component is a subtype of the other.

4.3 Builtin Functions and Their Type

In the above typing rules, we utilize a contextΓ which contains the type of builtin

functions. Notice, there was no introduction rule for the contextΓ, so all functions within

the context must be predefined. The following two sections detail these functions and their

types. In the first section, we address functions that acceptpurely scalar arguments. Then,

we generalize these ideas into functions that accept matrixarguments.

4.3.1 Scalar Functions

By scalar function, we mean a function where all model functions input into the func-

tion must have a scalar codomain. We type these functions as follows

34

Partial Order Defined by the Nonnegative Orthant

The partial order defined by the nonnegative orthant has type

��+ : {〈c, p,m, o〉}2k → ^

where there are no restrictions on the properties of the function.

Equality

Equality has the following type

=: {〈c, p,m, o〉}2k → ^

Like the partial order defined by the nonnegative orthant, wedo not restrict the kind of

functions used in equality constraints.

Addition

Addition between scalars has the following type,

+ : {〈c, p,m, o〉}2k → 〈c, p,m, o〉

where

35

c =







































































/ ck = /

⌢ ck =⌢

⌣ ck =⌣

⊥ otherwise

p =







































































α1 + α2 pk = αk

(α1 + α2, a1 + a2) pk = (α, a)k

(α1 + α2, a1 + a2,A1 + A2) pk = (α, a,A)k

⊥ otherwise

m=







































































– mk = –

ր mk =ր

ց mk =ց

⊥ otherwise

o =































� ok = �

� ok = �

Negation

The negation of a scalar has the following type

− : {〈c, p,m, o〉}1k → 〈c, p,m, o〉

where

36

c =







































































/ c1 = /

⌢ c1 =⌣

⌣ c1 =⌢

⊥ otherwise

p =







































































−α1 p1 = α1

(−α1,−a1) p1 = (α, a)1

(−α1,−a1,−A1) p1 = (α, a,A)1

⊥ otherwise

m=







































































– m1 = –

ր m1 =ց

ց m1 =ր

⊥ otherwise

o =



















































{−1, 1} o1 = {−1, 1}

� o1 = �

� o1 = �

Subtraction

The subtraction of one scalar from another has the followingtype

− : {〈c, p,m, o〉}2k → 〈c, p,m, o〉

37

The resulting type is identical to the type of the composite function f + (−g) where f and

g are the two the arguments passed into negation.

Multiplication

Multiplication between two scalars has the following type

∗ : {〈c, p,m, o〉}2k → 〈c, p,m, o〉

where

c =



























































































































































/ c1 = /, p2 = α2

⌢



















































c1 =⌢, p2 = α2 ≥ 0

c1 =⌣, p2 = α2 ≤ 0

p = (α, a,A),A � 0

⌣



















































c1 =⌣, p2 = α2 ≥ 0

c1 =⌢, p2 = α2 ≤ 0

p = (α, a,A),A � 0

⊥ otherwise

p =































































































α1α2 p1 = α1, p2 = α2

(α1α2, a1α2) p1 = (α, a)1, p2 = α2

(α1α2, a1α2,A1α2) p1 = (α, a,A)1, p2 = α2

(α1α2, a1α2 + α1a2, (a1aT
2 + a2aT

1)/2) p1 = (α, a)1, p2 = (α, a)2

⊥ otherwise

38

m=



















































































































– mk = –

ր































m1 =ր, p2 = α2 ≥ 0

m1 =ց, p2 = α2 ≤ 0

ց































m1 =ց, p2 = α2 ≥ 0

m1 =ր, p2 = α2 ≤ 0

⊥ otherwise

o=







































































{0, 1} ok = {0, 1}

{−1, 1} ok = {−1, 1}

� ok = �

� ok = �

Scalar multiplication is also commutative, i.e.x ∗ y = y ∗ x. Thus, we can type the

corresponding function in the same manner as above, but withthe arguments reversed.

Division

The division of one scalar by another has the following type

/ : {〈c, p,m, o〉}2k → 〈c, p,m, o〉

where

39

c =



























































































































































/ c1 = /, p2 = α2

⌢



















































c1 =⌢, p2 = α2 ≥ 0

c1 =⌣, p2 = α2 ≤ 0

p = (α, a,A),A � 0

⌣



















































c1 =⌣, p2 = α2 ≥ 0

c1 =⌢, p2 = α2 ≤ 0

p = (α, a,A),A � 0

⊥ otherwise

p =







































































α1/α2 p1 = α1, p2 = α2

(α1/α2, a1/α2) p1 = (α, a)1, p2 = α2

(α1/α2, a1/α2,A1/α2) p1 = (α, a,A)1, p2 = α2

⊥ otherwise

m=



















































































































– m1 = –, p2 = α2

ր































m1 =ր, p2 = α2 ≥ 0

m1 =ց, p2 = α2 ≤ 0

ց































m1 =ց, p2 = α2 ≥ 0

m1 =ր, p2 = α2 ≤ 0

⊥ otherwise

o =



















































{−1, 1} ok = {−1, 1}

� o1 = �, o2 = {−1, 1}

� ok = �

40

Absolute Value

The absolute value of a scalar has the following type

| · | : {〈c, p,m, o〉}1k → 〈c, p,m, o〉

where

c =































/ p1 = α1

⊥ otherwise

p =































|α1| p1 = α1

⊥ otherwise

m=































– m1 = –

⊥ otherwise

o =







































































{0, 1} o1 = {0, 1}

{−1, 1} o1 = {−1, 1}

� o1 = �

� o1 = �

Binary Maximum

We type the maximum between two scalars as follows

max: {〈c, p,m, o〉}2k → 〈c, p,m, o〉

41

where

c =



















































/ pk = αk

⌢ ck =⌢

⊥ otherwise

p =































max(α1, α2) pk = αk

⊥ otherwise

m=







































































– mk = –

ր mk =ր

ց mk =ց

⊥ otherwise

o=







































































{0, 1} ok = {0, 1}

{−1, 1} ok = {−1, 1}

� ok = �

� otherwise

Binary Minimum

The binary minimum between two scalars types as

min : {〈c, p,m, o〉}2k → 〈c, p,m, o〉

where

42

c =



















































/ pk = αk

⌣ ck =⌣

⊥ otherwise

p =































min(α1, α2) pk = αk

⊥ otherwise

m=







































































– mk = –

ր mk =ր

ց mk =ց

⊥ otherwise

o =







































































{0, 1} ok = {0, 1}

{−1, 1} ok = {−1, 1}

� ok = �

� otherwise

Exponentiation

The exponentiation of one scalar by another has type

·· : {〈c, p,m, o〉}2k → 〈c, p,m, o〉

where

43

c =



























































































































































/



















































pk = αk

p2 = 0

c1 = /, p2 = 1

⌢



















































c1 = /, p2 = α2, α2 mod 2= 0, α2 > 1

c1 =⌢, p2 = 1

c1 =⌢, p1 = (0, 0,A1), p2 = 1/2

⌣ c1 =⌣, p2 = 1

⊥ otherwise

p =































































































α
α2
1 p1 = α1, p2 = α2

1 p2 = 0

p1 p2 = 1

(α2
1, 2α1a1, a1aT

1) p1 = (α1, a1), p2 = 2

⊥ otherwise

m=







































































– mk = –

ր m1 =ր, p2 = α2, α2 mod 2= 1, α2 > 0

ց mk =ց, p2 = α2, α2 mod 2= 1, α2 > 0

⊥ otherwise

o =







































































{0, 1} ok = {0, 1}

{−1, 1} ok = {−1, 1}

� ok = �, p2 = α2, α2 ≥ 0

� otherwise

44

4.3.2 Matrix Functions

By matrix function, we mean a function that can accept any arbitrary model function

as an input regardless if that function has a scalar or matrixcodomain. These functions are

typed as follows.

Partial Order Defined by the Nonnegative Orthant

The partial order defined by the nonnegative orthant has type

��+ :
{

{〈c, p,m, o〉mn
i j , y}

}2

k
→ ^

where we require thatm1 = m2 andn1 = n2.

Partial Order Defined by the Second Order Cone

The partial order defined by the second order cone has type

�Q:
{

{〈c, p,m, o〉mn
i j , y}

}2

k
→ ^

where we require thatm1 = m2, n1 = n2, and that eitherm1 = 1 orn1 = 1.

Partial Order Defined by the Cone of Positive Semidefinite Matrices

The partial order defined by the cone of positive semidefinitematrices has type

�S+ :
{

{〈c, p,m, o〉mn
i j , y}

}2

k
→ ^

45

where we require thatm1 = m2 = n1 = n2 andy1 = y2 = ‡.

Equality

Equality as the following type

=:
{

{〈c, p,m, o〉mn
i j , y}

}2

k
→ ^

where we require thatm1 = m2 andn1 = n2.

Addition

Addition between matrices has the following type,

+ :
{

{〈c, p,m, o〉mn
i j , y}

}2

k
→ {〈c, p,m, o〉mn

i j , y}

wherem = m1 = m2 and n = n1 = n2. Let f and g be the two arguments given to

addition. Then, we type each (i, j) element of the codomain asfi j + gi j . Additionally, when

y1 = y2 = ‡, y = ‡.

Negation

The negation of a matrix has the following type

− :
{

{〈c, p,m, o〉mn
i j , y}

}1

k
→ {〈c, p,m, o〉mn

i j , y}

46

wherem = m1 andn = n1. When f is the argument passed into negation, we type each

(i, j) pointwise function as− fi j . If y1 = ‡, we also specify thaty = ‡.

Subtraction

The subtraction of one matrix from another has the followingtype

− :
{

{〈c, p,m, o〉mn
i j , y}

}2

k
→ {〈c, p,m, o〉mn

i j , y}

wherem = m1 = m2 andn = n1 = n2. Let the two arguments given to subtraction bef

andg. Then, we type each (i, j) element of the codomain asfi j − gi j . Additionally, when

y1 = y2 = ‡, y = ‡.

Multiplication by a Scalar

The multiplication of a matrix by a scalar has the following type

∗ :
{

{〈c, p,m, o〉mn
i j , y}

}2

k
→ {〈c, p,m, o〉mn

i j , y}

wherem= m1, n = n1, and we require thatm2 = n2 = 1. Let f andg be the two arguments.

Then, we type the (i, j)th pointwise function asfi j ∗ g. Wheny1 = ‡, we also specify that

y = ‡. Finally, as multiplication by a scalar is commutative, we type the corresponding

function in the same manner as above with the arguments reversed.

47

Division by a Scalar

The division of a matrix by a scalar has the following type

/ :
{

{〈c, p,m, o〉mn
i j , y}

}2

k
→ {〈c, p,m, o〉mn

i j , y}

wherem = m1, n = n1, and we require thatm2 = n2 = 1. When f andg are our two

arguments, we type the (i, j)th pointwise function asfi j/g. As with multiplication, when

y1 = ‡, we specify thaty = ‡.

Submatrixing

The submatrixing of a matrix has the following type

··:·,·:· :
{

{〈c, p,m, o〉mn
i j , y}

}1

k
, {η}4k → {〈c, p,m, o〉mn

i j , y}

where we require thatm1 ≥ η3 ≥ η1 andn1 ≥ η4 ≥ η2. When these conditions are satisfied,

we specify thatm = η2 − η1 + 1 andn = η4 − η3 + 1. Let the first argument bef . Then,

the type of the (i, j)th element in the result is that off(i+η1)(j+η3). Further, we state thaty = ‡

wheny1 = ‡ andη1 = η3, η2 = η4.

48

Subindexing

The subindexing of a matrix has the following type

··,· :
{

{〈c, p,m, o〉mn
i j , y}

}1

k
, {η}2k → 〈c, p,m, o〉

where the type is nearly identical to the submatrixing function with the matrix indices

(η1 : η1, η2 : η2). The only difference is that since the result is a scalar, it must be symmetric.

Matrix Multiplication

The multiplication of two matrices has the following type

∗ :
{

{〈c, p,m, o〉mn
i j , y}

}2

k
→ {〈c, p,m, o〉mn

i j , y}

where we stipulate thatm = m1, n = n2, andn1 = m2. Before we define the possible type

combinations, let us recall the definition of matrix multiplication

Ci j =

n
∑

k=1

AikBk j

Now, recall that we are considering matrix valued functions. Thus, we have that

hi j (x) =
n

∑

k=1

fik(x)gk j(x)

49

Each function fik and gk j is scalar valued. Thus, we can determine the type ofhi j by

combining the typing rules for addition, scalar multiplication, and subindexing. Finally,

since we can not guarantee symmetry,y = ⊥.

Absolute Value

The pointwise application of absolute value has the following type

| · | :
{

{〈c, p,m, o〉mn
i j , y}

}2

k
→ {〈c, p,m, o〉mn

i j , y}

wherem= m1 andn = n2. Let f be the argument given. Then, we can type each pointwise

function of the absolute value function by| fi j |. Moreover,y = y1.

Elementwise Maximum

The elementwise maximum of a matrix has the following type

max:
{

{〈c, p,m, o〉mn
i j , y}

}1

k
→ 〈c, p,m, o〉

where each type combination is determined by recursively applying the binary maximum

between two scalars in the following manner. Letf be the argument passed intomax. Then,

we determine the type of max using the following relation

max(f)

= max(f11,max(f21, . . . ,max(fm1,max(f12, . . . ,max(fm−1,n, fmn) . . .) . . .) . . .) . . .)

50

Whenm1 = n1 = 1, the type ofmaxis that of its argument

Elementwise Minimum

The elementwise minimum of a matrix has the following type

min :
{

{〈c, p,m, o〉mn
i j , y}

}1

k
→ 〈c, p,m, o〉

where the type combinations are defined similarly to elementwise maximum. Whenf is

the argument passed intomin, we determine the type ofminwith the following

min(f)

= min(f11,min(f21, . . . ,min(fm1,min(f12, . . . ,min(fm−1,n, fmn) . . .) . . .) . . .) . . .)

Whenm1 = n1 = 1, the type ofmin is the same as its argument.

Summation

The sum of all elements in a matrix has type

sum:
{

{〈c, p,m, o〉mn
i j , y}

}1

k
→ 〈c, p,m, o〉

where each type combination is defined using a method similarto elementwise min and

max. Let the argument handed to sum be denoted byf . Then, we define the type of sum as

sum(f) = f11 + f21 + · · · + fm1 + f12 + · · · + fm−1,n + fmn

51

In the case thatm1 = n1 = 1, the type ofsumcoincides withf .

P-Norms

All p-norms withp ≥ 1 have the following type

‖ · ‖p :
{

{〈c, p,m, o〉mn
i j , y}

}1

k
→ 〈c, p,m, o〉

where

c =



















































/ p = α

⌢ c1i j = / for all i, j

⊥ otherwise

p =































‖A‖p p1 = α1i j for all i, j andAi j = α1i j

⊥ otherwise

m=































– p = α

⊥ otherwise

o = �

Transpose

The transpose of a matrix has the following type

·T :
{

{〈c, p,m, o〉mn
i j , y}

}1

k
→ {〈c, p,m, o〉mn

i j , y}

52

wherem = n1 andn = m1. Then, the type of the (i, j)th element in the result is equal

to the type of the (j, i)th element of the argument. Further, as this operation is symmetry

preserving,y = y1.

Trace

The trace of a matrix has type

tr :
{

{〈c, p,m, o〉mn
i j , y}

}1

k
→ 〈c, p,m, o〉

where we require thatm1 = n1. Recall, the trace of a matrix is defined as

tr(X) =
n

∑

i=1

Xii

Thus, we determine the type of trace by combining the typing rules for subindexing and

addition.

Horizontal Concatenation

The horizontal concatenation of two matrices has type

[· ·] :
{

{〈c, p,m, o〉mn
i j , y}

}2

k
→ {〈c, p,m, o〉mn

i j , y}

where we stipulate thatm1 = m2. When we satisfy this condition, we specify thatm = m1

andn = n1 + n2. When we denote our two arguments byf andg respectively, we type the

53

(i, j)th pointwise function asfi j for j ≤ n1 andgi, j−n1, otherwise. We always specify that

y = ⊥.

Vertical Concatenation

Similar to horizontal concatenation, the vertical concatenation of two matrices has type































·

·































:
{

{〈c, p,m, o〉mn
i j , y}

}2

k
→ {〈c, p,m, o〉mn

i j , y}

where we require thatn1 = n2. Should we satisfy this condition, we define thatm= m1+m2

andn = n1. When we denote our two arguments byf andg respectively, we type the (i, j)th

pointwise function asfi j for i ≤ m1 andgi−m1, j, otherwise. We always note thaty = ⊥.

Symmetric Concatenation

Symmetric concatenation allows us to combine matrices while ensuring symmetry. This

function has type































· ·

·































=
{

{〈c, p,m, o〉mn
i j , y}

}3

k
→ {〈c, p,m, o〉mn

i j , y}

where we must guarantee thatm1 = m2, n2 = n3, andy1 = y3 = ‡. Once we meet these

conditions, we specify thatm = m1 + m3 andn = n1 + n2. Let the three arguments be

denoted byf , g, andh and denote the result byr. We denote the type of the (i, j)th element

54

of the result as

r i j =







































































fi j 1 ≤ i ≤ m1, 1 ≤ j ≤ n1

gi, j−n1 1 ≤ i ≤ m1, n1 + 1 ≤ j ≤ n1 + n2

g j,i−m1 m1 + 1 ≤ i ≤ m1 +m3, 1 ≤ j ≤ n1

hi−m1, j−n1 m1 + 1 ≤ i ≤ m1 +m3, n1 + 1 ≤ j ≤ n1 + n2

Finally, we specify thaty = ‡.

Maximum Eigenvalue

The maximum eigenvalue function has the following type

λmax :
{

{〈c, p,m, o〉mn
i j , y}

}1

k
→ 〈c, p,m, o〉

where

c =



















































/ p = α

⌢ c1i j = / for all i, j

⊥ otherwise

p =































λmax(A) p1 = α1i j for all i, j andAi j = α1i j

⊥ otherwise

m=































– p = α

⊥ otherwise

o = �

55

We require thatm1 = n1 andy1 = ‡.

Minimum Eigenvalue

We type the minimum eigenvalue function in a manner similar to the maximum

λmin :
{

{〈c, p,m, o〉mn
i j , y}

}1

k
→ 〈c, p,m, o〉

where

c =



















































/ p = α

⌣ c1i j = / for all i, j

⊥ otherwise

p =































λmin(A) p1 = α1i j for all i, j andAi j = α1i j

⊥ otherwise

m=































– p = α

⊥ otherwise

o = �

Additionally, we require thatm1 = n1 andy1 = ‡.

56

Chapter 5

Semantics

Up until this point, we have defined a series of rules that specify the form a mathemat-

ical program. This form by itself has no inherent meaning. Inother words, a program is

simply text. We have defined rules to insure this text is well-formed. The semantics of

a language define a series of functions that map text to mathematical meaning. Once we

define our semantics, we can prove that our above typing rulesare correct. For example,

we can prove that when an expression has type⌢, then this expression represents a convex

function.

5.1 Preliminaries

In the following presentation we introduce key concepts used within the formal se-

mantics. This includes a brief description of denotationalsemantics. It also includes the

definitions and basic results about convexity, polynomality, and monotonicity. During their

discussion, we pay special attention to how we apply these concepts to functions of matri-

ces. Next, we will describe the relations that define our constraints. This includes how a

pointed convex cone describes a partial order which is central to cone programming.

57

5.1.1 Denotational Semantics

The core idea behind denotational semantics is the definition of a function that maps

grammar to mathematical meaning. There are two contrastingapproaches that we may

choose. In the Curry-style approach, we assign a meaning to every term regardless of

whether it is well-typed. After we define the meaning of each term, we discard ill-typed

terms. In the Church-style approach, we reverse the order ofthese steps. Thus, we type

check each term and give meaning only to the remaining well-typed terms. In the following

presentation, we employ the Church-style of semantics and define meaning only on well-

typed terms.

Continuing our calculator example, we define two sets. First, let T = {�,�} be the

set of that contains two elements, the set of rationals and the set of booleans. Second,

we define the set of all possible binary functions that operate on rationals and booleans as

F = {[t1 × t2→ t3]}ti∈T. This allows us to define the semantics of our calculator as

Types ~·� : T → T

~�� = �

~�� = �

Function Types ~·� : ({T,T} → T)→ F

~{t1, t2} → t�=[~t1� × ~t2�→ ~t�]

Expressions ~·� : G× E × T ⇀
⋃

t∈T t

~Γ ⊢ c : t� = c

�

Γ ⊢ f {e1, e2} : t
�

=
�

Γ ⊢ f : {t1, t2} → t
� {~Γ ⊢ e1 : t1� , ~Γ ⊢ e2 : t2�}

58

Functions ~·� : G× E × ({T,T} → T)⇀
⋃

f∈F f

~Γ ⊢ + : {�,�} → �� = x, y 7→ x+ y

~Γ ⊢ − : {�,�} → �� = x, y 7→ x− y

~Γ ⊢ ∗ : {�,�} → �� = x, y 7→ xy

~Γ ⊢ / : {�,�} → �� = x, y 7→ x/y

~Γ ⊢ and : {�,�} → �� = x, y 7→ x andy

~Γ ⊢ or : {�,�} → �� = x, y 7→ x or y

As an example, we define the meaning of 1+ 2+ 3 as

~Γ ⊢ 1+ 2+ 3 : �� = ~Γ ⊢ + : � × �→ �� {~Γ ⊢ 1+ 2 : �� , ~Γ ⊢ 3 : ��}

= (x, y 7→ x+ y) (~Γ ⊢ + : � × �→ �� {~Γ ⊢ 1 : �� , ~Γ ⊢ 2 : ��}, 3)

= (x, y 7→ x+ y)((x, y 7→ x+ y)(1, 2), 3)

= (x, y 7→ x+ y)(1+ 2, 3)

= (x, y 7→ x+ y)(3, 3)

= 3+ 3

= 6

Thus, we have mapped the meaning of a textual program, 1+2+3, to its actual mathematical

meaning 6.

59

5.1.2 Soundness and Completeness

A technical result called soundness gives us confidence thatwe correctly designed a

language. Recall, using denotational semantics, the meaning of every type is a set and the

meaning of every well-typed expression is a mathematical object. Soundness states that the

meaning of every well-typed expression lies within the meaning of its type. In other words,

it states that~Γ ⊢ e : t� ∈ ~t�. Once we prove this result, we know that if our typing rules

prove that an expression has type, say,�, then the meaning of this expression must be a

rational number.

We prove the soundness of our calculator with the following argument. Assume that

c represents a rational constant. Then, our typing rules tellus thatΓ ⊢ c : �. Thus,

we must show that~Γ ⊢ c : �� ∈ ~��. By definition, ~Γ ⊢ c : �� = c and ~�� = �.

Since we assumed thatc ∈ �, our definition is sound. Similarly, assume thatc repre-

sents a boolean constant. Our typing rules stipulate thatΓ ⊢ c : �. Therefore, we must

show that~Γ ⊢ c : �� ∈ ~��. Since we defined that~Γ ⊢ c : �� = c ∈ � = ~��, our

definition is sound. Finally, we must consider function applications. Recall, we define

that
�

Γ ⊢ f {e1, e2} : t
�

=
�

Γ ⊢ f : {t1, t2} → t
� {~Γ ⊢ e1 : t1� , ~Γ ⊢ e2 : t2�}. By induction,

we know that~Γ ⊢ e1 : t1� ∈ ~t1� and~Γ ⊢ e2 : t2� ∈ ~t2�. Therefore, we must show that

the definition of each function definition withinΓ is sound.

We begin with addition where we define that~Γ ⊢ + : {�,�} → �� = x, y 7→ x + y.

Addition maps two rationals to a rational. By induction, we know both arguments to+

must be rational. Therefore, the result of application mustbe rational and the meaning is

60

sound. This same argument applies to−, ∗, and/. Thus, let us consider the logical and

between two booleans. We define that~Γ ⊢ and : {�,�} → �� = x, y 7→ x andy. Logical

and maps two booleans to another boolean. By induction, we know both arguments toand

are boolean. Hence, the result of application must be boolean and the meaning is sound.

This same argument applies to the functionor.

We have shown that the meaning of all expressions in the calculator is sound. Therefore,

our definition of the calculator language is sound.

A related, but less important, result is completeness. Completeness considers whether

a language can represent an arbitrary mathematical object in its domain. In other words, it

considers whether for anyc ∈ ~t� there existse such that~Γ ⊢ e : t� = c. This result gives

us an idea of the expressiveness of our language.

The definition of our calculator is trivially complete. Given anyc ∈ �, we define that

~Γ ⊢ c : �� = c. Similarly, for anyc ∈ �, we define that~Γ ⊢ c : �� = c. Therefore, the

language is complete. Unfortunately, this by itself does not give us much information about

the expressiveness of our language. We learn far more information about the expressiveness

by considering the completeness of our functions. Notice that [~t1�×~t2�→ ~t�] represents

a set that contains an uncountably infinite number of functions. The calculator may only

express six functions in this set:+, −, ∗, /, and, andor. Therefore, the true expressiveness

of our calculator is restricted by the number of functions that we define.

61

5.1.3 Convexity

Intuitively, we view convex objects as items that are bowl shaped. The formal definition

mirrors this idea closely. A setS is convex when for anyx, y ∈ S andλ ∈ [0, 1] we have

that

λx+ (1− λ)y ∈ S

A function f : S→ � is convex when

f (λx+ (1− λ)y) ≤ λ f (x) + (1− λ) f (y)

Similarly, a function is concave when we reverse the above inequality. A function is affine

when it is both convex and concave. Notice that all functionsfall into four categories:

convex, concave, affine, or neither.

We must make one special note. Recall that the domain of each function in our lan-

guage is defined by the decision variables. This includes sets such as integers which are

nonconvex. Properly, convexity does not make sense on thesesets. However, since solvers

typically handle integer constraints specially, we assumethat the domain of each variable

is real, and hence convex.

5.1.4 Polynomality

A function is a polynomial when it can be represented exactlyby some Taylor expansion

of a finite order. When a mathematical program is comprised entirely of linear or quadratic

62

functions, a solver may be able to use specialized algorithms to solve the problem. A

function is a quadratic polynomial when it is defined exactlyby its second order Taylor

series. Thus, a functionf : �n→ � is quadratic if we can represent it exactly byq where

q(x) = f (0)+ 〈∇ f (0), x〉 + 1
2
〈∇2 f (0)x, x〉

= α + 〈a, x〉 + 〈Ax, x〉

whereα ∈ �, a ∈ �n, andA = AT ∈ �n×n. Analogously, a function is a linear polynomial

when it is defined exactly by its first order Taylor series. In our discussion, we only describe

quadratic polynomials in detail since linear and constant polynomials are subsumed by

quadratics.

We generalize this concept to matrices in a natural way usingtensors. Given a function

f : �m×n → �, the second order Taylor approximation is given by

q(x) = f (0)+ 〈∇ f (0), x〉 + 1
2
〈∇2 f (0)(x), x〉

= α + 〈a, x〉 + 〈A(x), x〉

whereα ∈ �, a ∈ �m×n, andA : �m×n → �m×n is a linear operator where

[A(x)] i j = 〈Ai j , x〉

63

andAi j ∈ �m×n. Thus, we can representA as a tensor where

Ai jkl =
1
2
∂ f
∂xi j∂xkl

Unfortunately, this isn’t quite enough. We would like to recognize bilinear functions

as quadratic. For example, the constraintXy = c defines a system of bilinear, or quadratic

constraints. Thus, each quadratic must be defined on all decision variables, not just a single

variable. Hence, we are concerned with functions wheref : �r1×c1+···+rn×cn → �. As the

domain off is awkward, we must be careful with how we represent elementsin its domain.

There are several ways to visualize elements in�r1×c1+···+rn×cn. One possible approach is

to flatten the elements into a vector. Alternatively, we can view elements as a sequence of

sizerk×ck matrices. In the first case, objects are easy to manipulate, but they lose structure.

In the second, elements possess a natural structure, but we must define operations such as

multiplication and factorization. Our presentation will combine both approaches. Since we

need to manipulate the Hessian during certain transformations, we represent the coefficients

in the Taylor series as vectors and matrices. In order to preserve the structure ofx we will

continue to view it as a sequence of matrices, but define the conversion operatorvecas

vec(x) =
n

⊕

k=1

vec(xk)

wherevec(xk) represents the normal vectorization of the matrixxk. As a result, we see that

the (k, i, j)th element ofx corresponds to theι(k, i, j)th element ofvec(x).

64

Using this notation, the second order Taylor approximationis given by

q(x) = f (0)+ 〈∇ f (0), vec(x)〉 + 1
2
〈∇2 f (0)vec(x), vec(x)〉

= α + 〈a, vec(x)〉 + 〈Avec(x), vec(x)〉

where

aι(k,i, j) =
∂ f
∂xki j

Aι(k,i, j)ι(k̄,ī, j̄) =
∂2 f
∂xki j xk̄ī j̄

Since quadratic functions possess a constant Hessian, the order of these partial derivatives

is inconsequential. Thus,A is symmetric.

For example, considerf : �1×2 × �2×1 → � where f (z1, z2) = z1z2 +

[

1 1

]

z2. This

function is quadratic inz where

f (z) =

〈









































































0

0

1

1









































































, vec(z)

〉

+

〈









































































0 0 1/2 0

0 0 0 1/2

1/2 0 0 0

0 1/2 0 0









































































vec(z), vec(z)

〉

As a final note, similar to convexity, we have trouble definingpolynomials on integer

domains. Thus, we assume that each variable is real and ignore this requirement.

65

5.1.5 Monotonicity

Monotonicity describes whether a function is either increasing or decreasing. This

property is important when determining if the composition of two convex functions is con-

vex. Formally, a functionf : � → � is monotonically increasing whenf (x) ≥ f (y) for

x ≥ y. Similarly, a function a monotonically decreasing when we reverse the first inequality

above. Notice that all functions fall into four categories:increasing, decreasing, neither, or

both.

This concept generalizes to the Cartesian product of matrixdomains with a suitable

partial order. LetVi be some matrix domain such as�m×n or �p×q. Given two points

x, y ∈ ∏n
k=1 Vk, x ��+ y whenxki j ≥ yki j for eachk, i, and j. Thus, we say that a function

f :
∏n

k=1 Vi → V is monotonically increasing whenf (x) ≥ f (y) for x ��+ y.

5.1.6 Relations

A binary relationRbetween two setsA andB is a subset ofA×B. Fora ∈ A andb ∈ B,

we say thataRbwhen (a, b) ∈ R. We are only concerned with relations commonly used

in optimization. Thus, we restrict our attention to equality, pointwise nonnegativity, and

the partial orders defined by the second-order cone and the cone of positive semidefinite

matrices.

Since we are operating on matrices, we define equality and nonnegativity pointwise.

Thus, forA, B ∈ �m×n, A = B whenAi j = Bi j for 1 ≤ i ≤ m and 1≤ j ≤ n. Similarly, for

A, B ∈ �m×n, A ��+ B whenAi j ≥ Bi j for all 1 ≤ i ≤ m and 1≤ j ≤ n.

66

Partial orders defined by pointed convex cones require more care. Recall, a partial order

is a binary relation that satisfies four properties

1. reflexivity: a � a

2. antisymmetry: if botha � b andb � a, thena = b

3. transitivity: if botha � b andb � c, thena � c

4. compatibility with linear operations

(a) homogeneity: ifa � b andλ ∈ � ≥ 0, thenλa � λb

(b) additivity: if botha � b andc � d, thena+ c � b+ d

Notice that this differs from an ordering since there may be some elements that we can not

compare. For example, our definition of pointwise nonnegativity defines a partial order.

Thus, in�2 we can see that






























1

1































≥































0

0































and































4

3































≥































2

2































But, we also see that






























0

1































�































1

0































and































1

0































�































0

1































Let us define a binary relation�K where

a �K b⇐⇒ a− b �K 0⇐⇒ a− b ∈ K

67

whereK is a pointed convex cone. Recall, all pointed convex cones must satisfy three

properties

1. K is nonempty and closed under addition:a, b ∈ K =⇒ a+ b ∈ K

2. K is a conic set:a ∈ K, λ ≥ 0 =⇒ λa ∈ K

3. K is pointed:a ∈ K and − a ∈ K =⇒ a = 0

This leads us to the following lemma

Lemma 1. The binary relation�K defines a partial order

Proof. We must verify the four properties of partial orders

1. reflexivity: SinceK is a cone, for anya ∈ K, λa ∈ K for λ ≥ 0. Letλ = 0. Thus, we

see that 0∈ K =⇒ a− a ∈ K =⇒ a �K a.

2. antisymmetry: Leta �K b andb �K a. This implies thata − b ∈ K andb − a =

−(a− b) ∈ K. But sinceK is pointed, this implies thata− b = 0 =⇒ a = b.

3. transitivity: Leta �K b andb �K c. Then we have thata− b ∈ K andb− c ∈ K. But,

sinceK is nonempty and closed under addition, we must have that (a− b)+ (b− c) =

a− c ∈ K =⇒ a �K c.

4. compatibility with linear operations

(a) homogeneity: Leta �K b andλ ≥ 0. SinceK is a conic set anda− b ∈ K, we

see thatλ(a− b) ∈ K =⇒ λa �K λb

68

(b) additivity: Let a �K b andc �K d. SinceK is nonempty and closed under

addition,a−b ∈ K, andc−d ∈ K, we find that (a−b)+ (c−d) = a+c−b−d ∈

K =⇒ a+ c− b− d �K 0 =⇒ a+ c �K b+ d

�

Three useful pointed convex cones include the nonnegative orthant, the second order

cone, and the cone of positive semidefinite matrices. The nonnegative orthant�n
+ is defined

as the set

�n
+ = {x ∈ �n : xi ≥ 0}

The second order coneQn is the set defined by

Qn =



















x ∈ �n : x1 ≥

√

√

n
∑

i=2

x2
i



















Finally, the cone of positive semidefinite matrices is the set defined by

Sn
+ =

{

X ∈ �n×n : X = XT ,∀d ∈ �n, dTXd ≥ 0
}

We prove that each of these is a pointed convex cone in the following lemma

Lemma 2. The nonnegative orthant, second order cone, and the cone of positive semidefi-

nite matrices are all pointed convex cones.

Proof. We begin with the nonnegative orthant. Letx, y ∈ �n
+. We must verify three prop-

erties. First, letz= x+ y. We see thatzi ≥ 0 for eachi sincexi ≥ 0, yi ≥ 0, andzi = xi + yi.

69

Thus,z ∈ �n
+ and we have shown that�n

+ is closed under addition. Second, letλ ≥ 0 and

z = λx. We see thatzi = λxi ≥ 0 since bothxi ≥ 0 andλ ≥ 0. Thus,z ∈ �n
+ and we have

shown that�n
+ is a cone. Finally, assume that−x ∈ �n

+. Then for eachi, xi ≥ 0 andxi ≤ 0.

Thus,xi = 0 and we have that�n
+ is pointed. Therefore,�n

+ is a pointed convex cone.

Next, we consider the second order cone. Letx, y ∈ Qn where

x =































x0

x̄































y =































y0

ȳ































First, letz= x+ y. Then, we have that

z=































x0 + y0

x̄+ ȳ































=































z0

z̄































Thus, we must verify thatz0 ≥ ‖z̄‖2. Sincex0 ≥ ‖x̄‖2 andy0 ≥ ‖ȳ‖2 we have that

z0 = x0 + y0 ≥ ‖x̄‖2 + ‖ȳ‖2 ≥ ‖x̄+ ȳ‖2 = ‖z̄‖2

from the triangle inequality. Thus,z ∈ Qn and we have shown thatQn is closed under

addition. Second, letλ ≥ 0 andz= λx. Sinceλ ≥ 0 andx ∈ Qn,

z0 = λx0 ≥ λ‖x̄‖2 = ‖λx̄‖2 = ‖z̄‖2

Thus,z ∈ Qn and we have shown thatQn is a cone. Finally, assume that−x ∈ Qn. Then, we

70

have that

−x0 ≥ ‖ − x̄‖2 = ‖x̄‖2

Thus, we have that

‖x̄‖2 ≤ x0 ≤ −‖x̄‖2

Since‖x̄‖ ≥ 0, this implies thatx = 0. Thus, 0∈ Qn and we have shown thatQn is pointed.

Therefore,Qn is a pointed convex cone.

Finally, we consider the cone of positive semidefinite matrices. LetX,Y ∈ Sn
+. First, let

Z = X + Y. Then for anyd ∈ �n, we have that

dTZd = dT(X + Y)d = dTXd+ dTYd≥ 0

since bothX,Y ∈ Sn
+. Thus, we have shown thatSn

+ is closed under addition. Second, let

λ ≥ 0 andZ = λX. Then for anyd ∈ �n we have that

dTZd = dT(λX)d = λdTXd ≥ 0

since bothλ ≥ 0 andX ∈ Sn
+. Thus, we have shown thatSn

+ is a cone. Finally, assume that

−X ∈ Sn
+. Then for anyd ∈ �n, we have thatdTXd ≥ 0 anddTXd ≤ 0. Thus,X = 0 and

we have shown thatSn
+ is pointed. Therefore,Sn

+ is a pointed convex cone. �

Since each of these cones defines a partial order, we will use the following convention.

Whenx ∈ �n
+, we denotex ��+ 0. Notice that this is a special case of pointwise inequality

71

defined above. Second, whenx ∈ Qn, we denotex �Q 0. Finally, whenx ∈ Sn
+, we denote

x �S+ 0. In each case, if−x � 0 then we state thatx � 0.

Practically, we consider these partial orders for two reasons. First, there exists a great

variety of problems that can be modeled using these partial orders. Second, we can effi-

ciently solve problems that contain these inequalities with primal-dual interior point meth-

ods.

5.1.7 Matrix Types

One central design difficulty stems from the ability to manipulate and analyze matrix

valued functions. Some properties such as convexity and polynomality only make sense

with scalar valued functions. Other properties such as symmetry are only useful when

considering matrix valued functions.

In order to understand matrix valued functions, let us consider an example. Letf :

�m×n×�n×1 → �m×1 where f (X, y) = Xyand letC ∈ �m×1 denote a constant matrix. Then,

the function f represents asystemof quadratic functions and the statementf (X, y) = C

delineates asystemof quadratic equations. This idea generalizes other classes of functions

and equations.

Thus, in one sense, we view matrix valued functions as a system of functions. This

allows us to consider the convexity, polynomality, and monotonicity of each function in

the system. In another sense, we view matrix valued functions as simply a function with

a matrix domain. This allows us to consider whether element in the range is symmetric.

It also allows us to define constraints based on partial orders such as second-order cone

72

constraints and semidefinite constraints.

In our definition of types, we specify that model functions have type

{

〈c, p,m, o〉mn
i j , y

}

This tells us that we have a matrix valued function where

f (x) =









































































f11(x) f12(x) . . . f1n(x)

f21(x) f22(x) . . . f2n(x)

...
...

. . .
...

fm1(x) fm2(x) . . . fmn(x)









































































Each individual functionfi j is scalar valued and it possesses the properties defined by the

tuple〈c, p,m, o〉i j . The propertyy tells us if the resulting matrix is symmetric.

5.2 Formal Definition

The grammar and type-system give structure to a language. Inother words, they ensure

that terms within the language are well-formed. However, these terms are simply text;

they do not have meaning. Denotational semantics assigns these pieces of text a precise,

unambiguous mathematical meaning. Once we know the meaningof these terms, we can

then prove results about our language.

The discussion of the semantics falls into two parts. In the first part, we will assign

a formal meaning to each type of the language. This will definea collection of sets. For

73

example,~⌢� defines the set of all convex functions. In the second part, wewill assign a

formal meaning to each well-typed term. In both of these cases, ~·� denotes the semantic

function that assigns meaning to terms.

In the following discussion, let the set of all possible codomains for scalar valued func-

tions be defined as

O = {�,�, {0, 1}, {−1, 1}}

This allows us to denote the set of all possible domains of a decision variable to be

D = {om×n,Sn}m,n∈�,o∈O

Since the domain of each function in an optimization problemis defined by the combined

domains of all decision variables, we define the set of all possible function domains as

S =















n
∏

i=1

di















n∈�,di∈D

Thus, the set of all possible systems of model functions is delineated by

M =















m
∏

i=1

n
∏

j=1

[s→ oi j]















i, j∈�,oi j∈O,s∈S

In a similar manner, we recall that any expression is either amodel function, a natural, or a

74

constraint. Hence, the set of all possible meanings for these expressions is given by

T = {m}m∈M ∪ {{η}}η∈� ∪ {�}s∈S,�⊆s

The set of all functions that map an arbitrary number of elements from T into another

element inT is given by

F =





























n
∏

i=1

ti → t





























n∈�,t,ti∈T

The meaning of the types is defined as follows

Convexity ~·� : C→ {[s→ o]}o∈S,s∈S

~/�={ f ∈ [s→ �] : ∀λ ∈ [0, 1], f (λx+ (1− λ)y) = λ f (x) + (1− λ) f (y)}s∈S

~⌢�={ f ∈ [s→ �] : ∀λ ∈ [0, 1], f (λx+ (1− λ)y) ≤ λ f (x) + (1− λ) f (y)}s∈S

~⌣�={ f ∈ [s→ �] : ∀λ ∈ [0, 1], f (λx+ (1− λ)y) ≥ λ f (x) + (1− λ) f (y)}s∈S

~⊥�={ f ∈ [s→ o]}o∈O,s∈S

Polynomality ~·� : P→ {[s→ o]}o∈S,s∈S

~α�={ f ∈ [s→ �] : f (x) = α}s∈S

~(α, a)�={ f ∈ [s→ �] : f (x) = α + 〈a, vec(x)〉}s∈S

~(α, a,A)�={ f ∈ [s→ �] : f (x) = α + 〈a, vec(x)〉 + 〈Avec(x), vec(x)〉}s∈S

~⊥�={ f ∈ [s→ o]}o∈O,s∈S

Monotonicity ~·� : M → {[s→ o]}o∈S,s∈S

75

~–�={ f ∈ [s→ �] : ∀x ≥ y, f (x) = f (y)}s∈S

~ր�={ f ∈ [s→ �] : ∀x ≥ y, f (x) ≥ f (y)}s∈S

~ց�={ f ∈ [s→ �] : x ≥ y, f (x) ≤ f (y)}s∈S

~⊥�={ f ∈ [s→ o]}o∈O,s∈S

Codomain ~·� : O→ O

~�� = �

~�� = �

~�� = �

~{0, 1}� = {0, 1}

~{−1, 1}� = {−1, 1}

Symmetry ~·� : Y→ M

~‡�={ f ∈ m : f (x) = f (x)T}m∈M

~⊥�={ f ∈ m}m∈M

Types ~·� : T → T

�{

〈c, p,m, o〉mn
i j , y

}�

=
{

f ∈ [s→ �m×n] ∩ �y� : fi j ∈
�

ci j

�

∩
�

pi j

�

∩
�

mi j

�

∩
{

g ∈
[

s→
�

oi j

�]}}

s∈S

�

η
�

={η}

76

~^�={x ∈ X : X ⊆ s}s∈S

Function Types ~·� : ({T}ni → T)→ F

�

{t}mi → t
�

=

[

m
∏

i=1
~ti�→ ~t�

]

Domain ~·� : D→ D

~om×n� = {~o�m×n}m,n∈�

~Sn� = {Sn}n∈�

Decision Variable Context ~·� : S→ S

�

{xi : di}ni=1

�

=
n
∏

i=1
~di�

As expected, the types associated with convexity, polynomality, monotonicity, and sym-

metry all map to a set of functions. Since we also track the pointwise codomain of each

function, the meaning of each codomain type is a set of numbers. Combining these types,

each expression must either be a model function, a natural number, or a set of feasible

points. The remaining definitions characterize the meaningof each context.

The precise meaning of each remaining term depends on its type. Thus, the remaining

semantics are defined on typing judgments. The meaning of these subexpressions is defined

inductively as

Mathematical Program ~·� : G × N ⇀ �

�

Γ ⊢ min e over Σ st {e}ni
�

77

= min
x∈A∩B

�

Γ;Σ ⊢ e : 〈c, p,m,�〉� (x)

where A = ~Σ�

B =
n
⋂

i=1
~Γ;Σ ⊢ ei : ^�

Expressions ~·� : G× S × E × T ⇀
⋃

t∈T t

�

Γ;Σ ⊢ A : η
�

=A

~Γ;Σ ⊢ A : 〈/,A, –,�〉�=x ∈ ~Σ� 7→ A

�

Γ;Σ ⊢ A :
{

〈/,Ai j , –,�〉mn
i j ,Y

}�

=x ∈ ~Σ� 7→ A

�

Γ; {x : d}nk ⊢ xk : 〈/, (0, eι(k,1,1)),ր, o〉
�

=x ∈
�

{x : d}nk
�

7→ xk

�

Γ; {x : d}nk ⊢ xk :
{

〈/, (0, eι(k,i, j)),ր, o〉mn
i j ,⊥

}�

=x ∈
�

{x : d}nk
�

7→ xk

�

Γ; {x : d}nk ⊢ xk :
{

〈/, (0, eι(k,i, j)),ր,�〉mm
i j , ‡

}�

=x ∈
�

{x : d}nk
�

7→ xk

�

Γ;Σ ⊢ f {e}mi : t
�

=
�

Γ ⊢ f : {t}mi → t
�

{~Γ;Σ ⊢ e : t�}mi

Scalar Functions ~·� : G× E × ({T}ni → T)⇀
⋃

f∈F f

�

Γ ⊢��+ : {〈c, p,m, o〉}2k → ^
�

= f , g 7→ {x : f (x) ≥ g(x)}

�

Γ ⊢=: {〈c, p,m, o〉}2k → ^
�

= f , g 7→ {x : f (x) = g(x)}

�

Γ ⊢ + : {〈c, p,m, o〉}2k → 〈c, p,m, o〉
�

= f , g 7→ (x 7→ f (x) + g(x))

�

Γ ⊢ − : {〈c, p,m, o〉}1k → 〈c, p,m, o〉
�

= f 7→ (x 7→ − f (x))

�

Γ ⊢ − : {〈c, p,m, o〉}2k → 〈c, p,m, o〉
�

= f , g 7→ (x 7→ f (x) − g(x))

78

�

Γ ⊢ ∗ : {〈c, p,m, o〉}2k → 〈c, p,m, o〉
�

= f , g 7→ (x 7→ f (x)g(x))

�

Γ ⊢ / : {〈c, p,m, o〉}2k → 〈c, p,m, o〉
�

= f , g 7→ (x 7→ f (x)/g(x))

�

Γ ⊢ | · | : {〈c, p,m, o〉}1k → 〈c, p,m, o〉
�

= f 7→ (x 7→ | f (x)|)

�

Γ ⊢ max: {〈c, p,m, o〉}2k → 〈c, p,m, o〉
�

= f , g 7→ (x 7→ max(f (x), g(x)))

�

Γ ⊢ min : {〈c, p,m, o〉}2k → 〈c, p,m, o〉
�

= f , g 7→ (x 7→ min(f (x), g(x)))

�

Γ ⊢ ·· : {〈c, p,m, o〉}2k → 〈c, p,m, o〉
�

= f , g 7→ (x 7→ f (x)g(x))

Matrix Functions ~·� : G× E × ({T}ni → T)⇀
⋃

f∈F f
�

Γ ⊢��+ :
{

{〈c, p,m, o〉mn
i j , y}

}2

k
→ ^
�

= f , g 7→ {x : f (x) ��+ g(x)}

�

Γ ⊢�Q:
{

{〈c, p,m, o〉mn
i j , y}

}2

k
→ ^
�

= f , g 7→ {x : f (x) �Q g(x)}

�

Γ ⊢�S+ :
{

{〈c, p,m, o〉mn
i j , y}

}2

k
→ ^
�

= f , g 7→ {x : f (x) �S+ g(x)}

�

Γ ⊢=:
{

{〈c, p,m, o〉mn
i j , y}

}2

k
→ ^
�

= f , g 7→ {x : f (x) = g(x)}

�

Γ ⊢ + :
{

{〈c, p,m, o〉mn
i j , y}

}2

k
→ {〈c, p,m, o〉mn

i j , y}
�

= f , g 7→ (x 7→ f (x) + g(x))

�

Γ ⊢ − :
{

{〈c, p,m, o〉mn
i j , y}

}1

k
→ {〈c, p,m, o〉mn

i j , y}
�

= f 7→ (x 7→ − f (x))

�

Γ ⊢ − :
{

{〈c, p,m, o〉mn
i j , y}

}2

k
→ {〈c, p,m, o〉mn

i j , y}
�

= f , g 7→ (x 7→ f (x) − g(x))

�

Γ ⊢ ∗ :
{

{〈c, p,m, o〉mn
i j , y}

}2

k
→ {〈c, p,m, o〉mn

i j , y}
�

= f , g 7→ (x 7→ f (x)g(x))

�

Γ ⊢ / :
{

{〈c, p,m, o〉mn
i j , y}

}2

k
→ {〈c, p,m, o〉mn

i j , y}
�

= f , g 7→ (x 7→ f (x)/g(x))

�

Γ ⊢ ··:·,·:· :
{

{〈c, p,m, o〉mn
i j , y}

}1

k
, {η}4k → {〈c, p,m, o〉mn

i j , y}
�

= f , a, b, c, d 7→ fa:b,c:d(x)

79

�

Γ ⊢ ··· :
{

{〈c, p,m, o〉mn
i j , y}

}1

k
, {η}2k → 〈c, p,m, o〉

�

= f , a, b 7→ fab(x)

�

Γ ⊢ | · | :
{

{〈c, p,m, o〉mn
i j , y}

}1

k
→ {〈c, p,m, o〉mn

i j , y}
�

= f 7→ (x 7→ Y) whereYi j = | fi j (x)|

�

Γ ⊢ max:
{

{〈c, p,m, o〉mn
i j , y}

}1

k
→ 〈c, p,m, o〉

�

= f 7→
(

x 7→ max
i, j

fi j (x)

)

�

Γ ⊢ min :
{

{〈c, p,m, o〉mn
i j , y}

}1

k
→ 〈c, p,m, o〉

�

= f 7→
(

x 7→ min
i, j

fi j (x)

)

�

Γ ⊢ sum:
{

{〈c, p,m, o〉mn
i j , y}

}1

k
→ 〈c, p,m, o〉

�

= f 7→
(

x 7→ ∑

i, j
fi j (x)

)

�

Γ ⊢ ‖ · ‖∞ :
{

{〈c, p,m, o〉mn
i j , y}

}1

k
→ 〈c, p,m, o〉

�

= f 7→ (x 7→ ‖ f (x)‖∞)

�

Γ ⊢ ‖ · ‖1 :
{

{〈c, p,m, o〉mn
i j , y}

}1

k
→ 〈c, p,m, o〉

�

= f 7→ (x 7→ ‖ f (x)‖1)

�

Γ ⊢ ‖ · ‖2 :
{

{〈c, p,m, o〉mn
i j , y}

}1

k
→ 〈c, p,m, o〉

�

= f 7→ (x 7→ ‖ f (x)‖2)

�

Γ ⊢ ·T :
{

{〈c, p,m, o〉mn
i j , y}

}1

k
→ {〈c, p,m, o〉mn

i j , y}
�

= f 7→ (x 7→ xT)

�

Γ ⊢ tr :
{

{〈c, p,m, o〉mn
i j , y}

}1

k
→ 〈c, p,m, o〉

�

= f 7→ (x 7→ tr(x))

�

Γ ⊢ [· ·] :
{

{〈c, p,m, o〉mn
i j , y}

}2

k
→ {〈c, p,m, o〉mn

i j , y}
�

= f , g 7→ (x 7→ [f (x) g(x)])

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Γ ⊢































·

·































:
{

{〈c, p,m, o〉mn
i j , y}

}2

k
→ {〈c, p,m, o〉mn

i j , y}

�

�

�

�

�

�

�

�

�

�

�

�

�

�

= f , g 7→































x 7→































f (x)

g(x)





























































�

�

�

�

�

�

�

�

�

�

�

�

�

�

Γ ⊢































· ·

·































:
{

{〈c, p,m, o〉mn
i j , y}

}3

k
→ {〈c, p,m, o〉mn

i j , y}

�

�

�

�

�

�

�

�

�

�

�

�

�

�

= f , g, h 7→































x 7→































f (x) g(x)

gT(x) h(x)





























































�

Γ;Σ ⊢ λmax :
{

{〈c, p,m, o〉mn
i j , y}

}1

k
→ 〈c, p,m, o〉

�

= f 7→ (x 7→ λmax(f (x)))

�

Γ;Σ ⊢ λmin :
{

{〈c, p,m, o〉mn
i j , y}

}1

k
→ 〈c, p,m, o〉

�

= f 7→ (x 7→ λmin(f (x)))

80

The meaning of a mathematical program follows our expectations. It consists of an ob-

jective function, the domain of all decision variables, anda list of constraints. Expressions

consists of four possibilities. They can be a natural number, a function that maps its argu-

ment to a constant, a function that projects out thekth element, or a function application.

The functions allowed during a function application fall into two categories. Either they

define a set of feasible points or they compose their arguments into another function.

For example, consider the meaning ofx + |y| whereΣ = {x : �1×1, y : �1×1}. We see

that

�

Γ;Σ ⊢ x+ |y| : 〈⊥,⊥,⊥,�〉�

=
�

Γ ⊢ + : {〈c, p,m, o〉}2k → 〈c, p,m, o〉
�































�

�

�

�

�

�

�

�

�

�

�

�

�

�

Γ;Σ ⊢ x :

〈

/,































0,































1

0





























































,ր,�
〉

�

�

�

�

�

�

�

�

�

�

�

�

�

�

,
�

Γ;Σ ⊢ |y| : 〈⊥,⊥,⊥,�〉�































= (f , g 7→ (x 7→ f (x) + g(x))) {x 7→ x1,

�

Γ ⊢ | · | : {〈c, p,m, o〉}1k → 〈c, p,m, o〉
�































�

�

�

�

�

�

�

�

�

�

�

�

�

�

Γ;Σ ⊢ y :

〈

/,































0,































1

0





























































,ր,�
〉

�

�

�

�

�

�

�

�

�

�

�

�

�

�





























































=(f , g 7→ (x 7→ f (x) + g(x))){x 7→ x1, (f 7→ (x 7→ | f (x)|)){x 7→ x2}}

=(f , g 7→ (x 7→ f (x) + g(x))){x 7→ x1, x 7→ |x2|}

=x 7→ x1 + |x2|

81

It is important to recognize that this function depends on the contextΣ. For instance, if

instead we definedΣ = {t : �7×9, x : �1×1, y : �1×1}, the meaning ofx + |y| would be

x 7→ x2 + |x3|. This seemingly minor detail will become extremely important during the

discussion of transformations.

5.3 Soundness and Completeness

In the following section, we will prove two results. We will show that the meaning

of any mathematical program is a real number. Additionally,we will show that it is not

possible to represent every real number by the meaning of a mathematical program using

our grammar. In other words, we will show that our language issound, but not complete.

Theorem 1 (Soundness of Expressions). For Γ ∈ G defined above and anyΣ ∈ S , e∈ E,

and t∈ T such thatΓ;Σ ⊢ e : t, ~Γ;Σ ⊢ e : t� ∈ ~t�.

Proof. In the above presentation, we have been careful to separate scalar functions from

matrix functions. We do this since proving soundness on scalar functions is more straight-

forward than matrix functions. In the following proof, we will consider all scalar cases

first. Then, we will use these results to help prove the matrixcases. In both cases, the proof

follows from induction on the structure ofe.

In the first case, we must verify that
�

Γ;Σ ⊢ A : η
� ∈ �η�. Recall, our typing rules stip-

ulate thatA must be a natural number denoted byη. Thus, soundness follows immediately

since
�

Γ;Σ ⊢ A : η
�

= A and
�

η
�

= {η}.

82

Next, we must check that

�

Γ; {x : d}nk ⊢ xk : 〈/, (0, eι(k,1,1)),ր, o〉
�

∈ �〈/, (0, eι(k,1,1)),ր, o〉
�

Our strategy will be to analyze the properties of the function on the left hand side. Then,

we will show that this function lies within the set defined on the right hand side.

We define the meaning of a scalar variable lookup as

�

Γ; {x : d}nk ⊢ xk : 〈/, (0, eι(k,1,1)),ր, o〉
�

= x ∈
�

{x : d}nk
�

7→ xk

Certainly, this function is affine since

(λx+ (1− λ)y)k = λxk + (1− λ)yk

In addition, we see that this function is linear. Notice that

∂(x ∈∏n
i=1Dk 7→ xk)

∂xk̄
=































1 ι(k, 1, 1) = k̄

0 otherwise

whereDp ⊆ �rp×cp and we recall thatι(k, 1, 1) = 1+
∑k−1

p=1 rpcp. Therefore, we can exactly

represent this function by its Taylor series

xk = 〈eι(k,1,1), vec(x)〉

83

Further, this function is increasing. Takex ��+ y. Then, by definition,xk ��+ yk for each

k. Finally, we also see by definition thatxk ∈ o. Therefore, we can safely assume that the

codomain ofx ∈
�

{x : d}nk
�

7→ xk lies ino.

Next, we must show that the above function lies within the following set

�〈/, (0, eι(k,1,1)),ր, o〉
�

=
{

f ∈ [s→ �] ∩ ~‡� : f ∈ ~/� ∩ �(0, eι(k,1,1))
� ∩ ~ր� ∩ {g ∈ [s→ ~o�]}}s∈S

Let us expand these terms. The first term becomes

f ∈ [s→ �] ∩ ~‡� = f ∈ [s→ �] ∩ { f ∈ m : f (x) = f (x)T}m∈M

= f ∈ [s→ �]

We can eliminate the explicit symmetry requirement as all scalar functions are symmetric.

Thus, each element of the set must map some domain to a real number. The next term

requires

f ∈ ~/� = { f ∈ [s→ �] : ∀λ ∈ [0, 1], f (λx+ (1− λ)y) = λ f (x) + (1− λ) f (y)}s∈S

In other words, this term stipulates that all functions in the set must be affine. Next, we

define that

f ∈ �(0, eι(k,1,1))
�

= { f ∈ [s→ �] : f (x) = 〈eι(k,1,1), vec(x)〉}s∈S

84

This states that each function in the set must be a linear polynomial where the linear coef-

ficient contains only a single one in theι(k, 1, 1) position. We also state that

f ∈ ~ր� = { f ∈ [s→ �] : ∀x ≥ y, f (x) ≥ f (y)}s∈S

This mandates that each function in the set must be increasing. Finally, we define that

{g ∈ [s→ ~o�]} = {g ∈ [s→ o]}

Thus, each function in the set must have codomaino. Since we verified that the function

x ∈
�

{x : d}nk
�

7→ xk possesses each of these properties, our definition of variable lookups is

sound.

The soundness of a scalar constant follows in a similar manner. We must show that

~Γ;Σ ⊢ A : 〈/,A, –,�〉� ∈ ~〈/,A, –,�〉�

By definition,

~Γ;Σ ⊢ A : 〈/,A, –,�〉� = x ∈ ~Σ� 7→ A

This trivially lies in the set

~〈/,A, –,�〉�

=
{

f ∈ [s→ �] ∩ ~‡� : f ∈ ~/� ∩
�

Ai j

�

∩ ~–� ∩ {g ∈ [s→ ~��]}
}

s∈S

85

Since this function is affine, constant, and both increasing and decreasing.

Now we consider the soundness of function application. Thus, we must show that

�

Γ;Σ ⊢ f {e}mi : t
�

∈ ~t�

We define that

�

Γ;Σ ⊢ f {e}mi : t
�

=
�

Γ ⊢ f : {t}mi → t
�

{~Γ;Σ ⊢ e : t�}mi

By induction, we know that the meaning of each of the arguments is sound. Thus, we must

check the soundness of each built-in function.

Consider two relations defined on scalars: the partial orderdefined by the positive

orthant and equality. We must show that

�

Γ ⊢��+ : {〈c, p,m, o〉}2k → ^
�

∈
�

{〈c, p,m, o〉}2k → ^
�

�

Γ ⊢=: {〈c, p,m, o〉}2k → ^
�

∈
�

{〈c, p,m, o〉}2k → ^
�

By definition, we see that

�

Γ ⊢��+ : {〈c, p,m, o〉}2k → ^
�

= f , g 7→ {x : f (x) ≥ g(x)}
�

Γ ⊢=: {〈c, p,m, o〉}2k → ^
�

= f , g 7→ {x : f (x) = g(x)}

Thus, the meaning of both of these judgments is a function that maps two functions to a

86

feasible set. We see that the meaning their types is

�

{〈c, p,m, o〉}2k → ^
�

=















2
∏

k=1

�〈c, p,m, o〉k
�→ ~^�















Thus, it is a set of functions where each function in the set maps two scalar model functions

into a set of feasible points. Certainly, both functions above fall within this set. Therefore,

their meaning is sound.

Next, we consider the meaning of addition. We must verify that

�

Γ ⊢ + : {〈c, p,m, o〉}2k → 〈c, p,m, o〉
�

∈
�

{〈c, p,m, o〉}2k → 〈c, p,m, o〉
�

for each type combination defined on page 35. By definition, wesee that

�

Γ ⊢ + : {〈c, p,m, o〉}2k → 〈c, p,m, o〉
�

= f , g 7→ (x 7→ f (x) + g(x))

Since addition is an increasing, affine function, its composition with two affine functions is

affine, two convex functions, convex, and two concave, concave.Further, the addition of

two polynomials is another polynomial whose coefficients are the sum of those in the two

composing functions. We also know that the addition of two constant functions is constant,

increasing functions, increasing, and decreasing functions, decreasing. Finally, the addition

of two integers must be an integer and the addition of two reals is real. These properties

match those given by the typing rules, thus the meaning is sound.

87

We now examine the meaning of negation. We must check that

�

Γ ⊢ − : {〈c, p,m, o〉}1k → 〈c, p,m, o〉
�

∈
�

{〈c, p,m, o〉}1k → 〈c, p,m, o〉
�

for all the type combinations defined earlier on page 36. We specify that

�

Γ ⊢ − : {〈c, p,m, o〉}1k → 〈c, p,m, o〉
�

= f 7→ (x 7→ − f (x))

Composition with negation reverses the convexity of a function. Thus, affine functions

remain affine, convex become concave, and concave become convex. Similarly, composing

with negation reverses the sort of monotonicity. Negation also preserves polynomality, but

negates the coefficients. Finally, the negation of a plus minus-one integer remains plus-

minus one integer, integer remains integer, real, real. As this matches the description given

in the typing rules, the meaning is sound.

We declare the meaning of subtraction to be

�

Γ ⊢ − : {〈c, p,m, o〉}2k → 〈c, p,m, o〉
�

= f , g 7→ (x 7→ f (x) − g(x))

We must verify that

�

Γ ⊢ − : {〈c, p,m, o〉}2k → 〈c, p,m, o〉
�

∈
�

{〈c, p,m, o〉}2k → 〈c, p,m, o〉
�

for each type combination on page 37. Subtraction can be defined by combining addition

88

and negation. In other words,f − g = f + (−g). Since we type subtraction by combining

the addition and negation rules and their meaning is sound, the meaning of subtraction is

also sound.

We define the meaning of multiplication as

�

Γ ⊢ ∗ : {〈c, p,m, o〉}2k → 〈c, p,m, o〉
�

= f , g 7→ (x 7→ f (x)g(x))

We must determine whether

�

Γ ⊢ ∗ : {〈c, p,m, o〉}2k → 〈c, p,m, o〉
�

∈
�

{〈c, p,m, o〉}2k → 〈c, p,m, o〉
�

for every type combination defined above on page 38. When a constant is positive, a con-

stant scaling of a function preserves the convexity. Conversely, when a constant is negative,

a constant scaling reverses the convexity. Next, when one function is a polynomial, a con-

stant scaling of that polynomial remains a polynomial with scaled coefficients. When both

functions are linear polynomials, their product is quadratic. Let f (x) = α + 〈a, x〉 and

89

g(x) = β + 〈b, x〉. Then

f (x)g(x) = (α + 〈a, x〉)(β + 〈b, x〉)

= (α + β) + (α〈b, x〉 + β〈a, x〉) + 〈a, x〉〈b, x〉

= (α + β) + 〈αb+ βa, x〉 + xTabT x

= (α + β) + 〈αb+ βa, x〉 + 〈abT x, x〉

= (α + β) + 〈αb+ βa, x〉 +
〈

abT + baT

2
x, x

〉

In the final step, we find the symmetric form of the quadratic coefficient. In addition, a

positive scaling preserves the monotonicity of a function while a negative scaling reverses

the monotonicity. Finally, if both arguments are zero-one,we know their product must be

zero-one. Similarly, the product of two plus-minus one numbers remains plus-minus one,

integer, integer, and real, real. Since each of these properties matches the type description,

its meaning is sound.

Next, we consider division. We must ascertain whether

�

Γ ⊢ / : {〈c, p,m, o〉}2k → 〈c, p,m, o〉
�

∈
�

{〈c, p,m, o〉}2k → 〈c, p,m, o〉
�

for each type combination on page 39. By definition, we see that

�

Γ ⊢ / : {〈c, p,m, o〉}2k → 〈c, p,m, o〉
�

= f , g 7→ (x 7→ f (x)/g(x))

90

When the second argument is constant, we have a constant scaling of the first function.

This behaves identically to multiplying the first function by a constant scalar. In addition,

we know that a plus-minus one number divided by another plus-minus one remains plus-

minus one, an integer divided by a plus-minus one remains integer, and a real divided by a

real remains real. As these properties align with the type description, the meaning is sound.

Examine the meaning of the absolute value function

�

Γ ⊢ | · | : {〈c, p,m, o〉}1k → 〈c, p,m, o〉
�

= f 7→ (x 7→ | f (x)|)

We must show that

�

Γ ⊢ | · | : {〈c, p,m, o〉}1k → 〈c, p,m, o〉
�

∈
�

{〈c, p,m, o〉}1k → 〈c, p,m, o〉
�

for every type combination defined above on page 41. When the sole argument is constant,

the resulting composition is constant. Therefore, the resulting function must be affine,

a constant polynomial, and both increasing and decreasing.Further, the absolute value

preserves each of the codomains that we define above. Since these properties agree with

the type descriptions, the meaning is sound.

Now, we must certify that

�

Γ ⊢ max: {〈c, p,m, o〉}2k → 〈c, p,m, o〉
�

∈
�

{〈c, p,m, o〉}2k → 〈c, p,m, o〉
�

91

for each defined typing combination on page 41. We define that

�

Γ ⊢ max: {〈c, p,m, o〉}2k → 〈c, p,m, o〉
�

= f , g 7→ (x 7→ max(f (x), g(x)))

When both arguments are constant, the resulting composition must be constant, hence,

affine. Next, we show that when both functions are convex, the resulting composition is

convex. We know that the max function is convex since

max(λx1 + (1− λ)y1, λx2 + (1− λ)y2) = max
i∈{1,2}
λxi + (1− λ)yi

≤ max
i∈{1,2}
λxi + max

i∈{1,2}
(1− λ)yi

= λmax
i∈{1,2}

xi + (1− λ) max
i∈{1,2}

yi

= λmax(x1, x2) + (1− λ) max(y1, y2)

It is also increasing since forx ≤ y, max(x1, x2) ≤ max(y1, y2). Therefore, the compo-

sition between max and a set of convex functions must be convex. As mentioned above,

when both arguments are constant, the resulting composition must be constant. Therefore,

the composition will be a constant polynomial whose constant coefficient is equal to the

maximum of the two constant coefficients. In addition, since the max function is increas-

ing, when both arguments are increasing, the result is increasing. Conversely, when both

92

arguments are decreasing, we have a similar result. Notice that

max{ f1(x), f2(x)} ≥ f1(x) ≥ f1(y)

max{ f1(x), f2(x)} ≥ f2(x) ≥ f2(y)

Therefore, max{ f1(x), f2(x)} ≥ max{ f1(y), f2(y)}. Thus, the composition is decreasing. Fi-

nally, we see that the maximum between two{0, 1} integers remains{0, 1}, {−1, 1} integer

remains{−1, 1}, integer, integer, and real, real. As each of these observations matches the

type descriptions, the meaning is sound.

Next, we assert that

�

Γ ⊢ min : {〈c, p,m, o〉}2k → 〈c, p,m, o〉
�

∈
�

{〈c, p,m, o〉}2k → 〈c, p,m, o〉
�

for each typing combination on page 42. We specify that

�

Γ ⊢ min : {〈c, p,m, o〉}2k → 〈c, p,m, o〉
�

= f , g 7→ (x 7→ min(f (x), g(x)))

As with the max function, when both arguments are constants,the result must be constant

and hence affine. By itself, the min function is concave where the proof follows from a

similar argument as the one used to show the convexity of the max function. In addition, it

is decreasing. Thus, the composition between min and a pair of concave functions remains

concave. As mentioned above, the composition with two constants functions is constant.

93

The coefficient is equal to the minimum of the two arguments. Additionally, since the min

function is decreasing, the composition with two decreasing functions remains decreasing.

The composition with two increasing functions remains increasing where the proof fol-

lows analogously to the max case. Finally, we see that when both arguments have a{0, 1}

codomain, the composition maintains the{0, 1} codomain. This also follows for{−1, 1}

integer, integer, and real codomains. Each of these properties follows the type descriptions.

Thus, the meaning is sound.

Finally, we reestablish the definition of exponentiation as

�

Γ ⊢ ·· : {〈c, p,m, o〉}2k → 〈c, p,m, o〉
�

= f , g 7→ (x 7→ f (x)g(x))

We must show that

�

Γ ⊢ ·· : {〈c, p,m, o〉}2k → 〈c, p,m, o〉
�

∈
�

{〈c, p,m, o〉}2k → 〈c, p,m, o〉
�

for each of the typing combinations formerly defined on page 43. First, let us consider when

the composition is affine. When both arguments are constant, the result must be constant,

hence, affine. Alternatively, when the second argument is 0, then the resulting function

must be a constant 1 which is also affine. In addition, when the first argument is affine and

the second argument is 1, the composition is equivalent to the first argument. Therefore,

the result is affine. Next, we consider when the composition is convex. Certainly, when the

first argument is convex and the second is 1, the composition is equal to the first argument.

94

Thus, it must be convex. Next, we notice thatx 7→ xp is convex whenp is positive and

even since

∂2

∂x2
(x 7→ xp) = x 7→ p(p− 1)xp−2

andp(p − 1)xp−2 ≥ 0 for all x. Therefore, the composition of this function with an affine

function must be convex. Alternatively, consider the case where the first argument is a con-

vex, pure quadratic and the second argument is 1/2. LetA1 be the second-order coefficient

of the first argument. Since this function is convex,A1 �S+ 0. Thus, we can factorA1 into

UTU. Then, we notice that

√

〈A1vec(x), vec(x)〉 =
√

〈UTUvec(x), vec(x)〉

=
√

〈Uvec(x),Uvec(x)〉

=‖Uvec(x)‖2

=‖vec(x)‖U

Since all norms are convex, the composition must be convex. Next, in a similar manner as

before, when the first argument is concave and the second argument is 1, the result must

be concave. Now, let us determine when the composition is a low-order polynomial. Of

course, when both arguments are constant, we can directly compute the exponentiation

which yields a constant polynomial. In a similar manner, when the second argument is 0,

the result must be a constant 1. Next, when the first argument is a low-order polynomial

and the second argument is 1, the result remains a low-order polynomial with the same

95

coefficients as the first argument. Alternatively, consider the case when the first argument

is a linear polynomial of the formα + 〈a, vec(x)〉 and we square the result. Then, we see

that

(α + 〈a, vec(x)〉)2 =α2 + 2α〈a, vec(x)〉 + 〈a, vec(x)〉〈a, vec(x)〉

=α2 + 〈2αa, vec(x)〉 + vec(x)TaaTvec(x)

=α2 + 〈2αa, vec(x)〉 + 〈aaTvec(x), vec(x)〉

Therefore, the composition is quadratic with coefficients (α2, 2αa, aaT). Now, let us con-

sider when the composition is monotonic. As we’ve mentionedbefore, when both argu-

ments are constant, the result must be constant. Next, we notice that the functionx 7→ xp

is increasing whenp ≥ 1 and odd since

∂

∂x
x 7→ xp = x 7→ pxp−1

and pxp−1 ≥ 0 for all x. Therefore, the composition of this function with an increasing

function is increasing and the the composition with a decreasing function is decreasing.

Finally, we consider the codomain of the function. When botharguments are zero-one

integer, we have four possible cases: 00, 01, 10, and 11. As long as we define 00 as 0 or

1, in each case, the result is either 0 or 1. Next, when both arguments are plus-minus one

integer, we also have four possible cases: 11, 1−1, −11, and−1−1. Thus, the result remains

±1 integer. When both arguments produce an integer result andthe second argument is a

96

positive constant, exponentiation reduces to multiplication. Since the product of an integer

with another integer is an integer, the result of composition remains integer. Since each of

these properties matches our definition, the meaning of exponentiation is sound.

At this point, we have verified soundness for all scalar functions. Now, we address

matrix functions. This includes analyzing the soundness ofmatrix variable lookups and

soundness of matrix functions. we use these results from thescalars cases to prove these

results.

We begin by considering matrix variable lookups. There are two cases

�

Γ; {x : d}nk ⊢ xk :
{

〈/, (0, eι(k,i, j)),ր, o〉mn
i j ,⊥

}�

∈
�{

〈/, (0, eι(k,i, j)),ր, o〉mn
i j ,⊥

}�

�

Γ; {x : d}nk ⊢ xk :
{

〈/, (0, eι(k,i, j)),ր,�〉mm
i j , ‡

}�

∈
�{

〈/, (0, eι(k,i, j)),ր,�〉mm
i j , ‡

}�

The meaning of both cases is defined by

�

Γ; {x : d}nk ⊢ xk :
{

〈/, (0, eι(k,i, j)),ր, o〉mn
i j ,⊥

}�

=
�

Γ; {x : d}nk ⊢ xk :
{

〈/, (0, eι(k,i, j)),ր,�〉mm
i j , ‡

}�

=x ∈
�

{x : d}nk
�

7→ xk

For each pointwise function, this reduces to the scalar case. Thus, we know that it is affine,

a linear polynomial, and increasing for each pointwise function. Further, we can reason that

the domain of each element is defined byo in the case of a general matrix or a real number

in the case of a symmetric variable. Hence, the only propertythat we can not extrapolate

97

from the scalar case is symmetry. From the definition of the meaning of the type

{ f ∈ [s→ �] ∩ �y� : . . . }s∈S

Wheny = ‡, we have that

~‡� = { f ∈ m : f (x) = f (x)T}m∈M

Thus, whenxk : Sm, we must verify thatx 7→ xk = x 7→ xT
k . However, this follows

immediately since thekth projection of the domain must be an element of the set~Sm� =

Sm. Thus, the meaning of variable lookups is sound.

We use a similar argument for matrix constants. We must show that

�

Γ;Σ ⊢ A :
{

〈/,Ai j , –,�〉mn
i j ,Y

}�

∈
�{

〈/,Ai j , –,�〉mn
i j ,Y

}�

The pointwise properties of the constant function follow from those in the scalar case.

Therefore, each element is affine, a constant polynomial, and both increasing and decreas-

ing. Thus, we simply need to check symmetry. We stipulate that Y = ‡ when the constant

A is symmetric and⊥ when it is not. Since the functionx 7→ A has a symmetric codomain

whenA is symmetric and our specification matches this property, our definition is sound.

We have already established that the soundness of application depends on the soundness

of the built-in functions. Thus, we must check the remainingbuilt-in functions; those that

operate on matrices.

98

Consider the relations equality and the partial orders defined by the nonnegative orthant,

second-order cone, and the cone of positive semidefinite matrices. We must show that

�

Γ ⊢=:
{

{〈c, p,m, o〉mn
i j , y}

}2

k
→ ^
�

∈
{

{〈c, p,m, o〉mn
i j , y}

}2

k
→ ^

�

Γ ⊢��+ :
{

{〈c, p,m, o〉mn
i j , y}

}2

k
→ ^
�

∈
{

{〈c, p,m, o〉mn
i j , y}

}2

k
→ ^

�

Γ ⊢�Q:
{

{〈c, p,m, o〉mn
i j , y}

}2

k
→ ^
�

∈
{

{〈c, p,m, o〉mn
i j , y}

}2

k
→ ^

�

Γ ⊢�S+ :
{

{〈c, p,m, o〉mn
i j , y}

}2

k
→ ^
�

∈
{

{〈c, p,m, o〉mn
i j , y}

}2

k
→ ^

We stipulate that

�

Γ ⊢=:
{

{〈c, p,m, o〉mn
i j , y}

}2

k
→ ^
�

= f , g 7→ {x : f (x) = g(x)}
�

Γ ⊢��+ :
{

{〈c, p,m, o〉mn
i j , y}

}2

k
→ ^
�

= f , g 7→ {x : f (x) ��+ g(x)}
�

Γ ⊢�Q:
{

{〈c, p,m, o〉mn
i j , y}

}2

k
→ ^
�

= f , g 7→ {x : f (x) �Q g(x)}
�

Γ ⊢�S+ :
{

{〈c, p,m, o〉mn
i j , y}

}2

k
→ ^
�

= f , g 7→ {x : f (x) �S+ g(x)}

The meaning of the common type is

�

{

{〈c, p,m, o〉mn
i j , y}

}2

k
→ ^
�

=















2
∏

k=1

�{

{〈c, p,m, o〉mn
i j , y}

}

k

�

→ ~^�














It is a set of functions where each function in the set maps twofunctions to a feasible region.

The meaning of equality and nonnegativity lie in this set as long as both of their arguments

are they same size. Fortunately, our typing rules require that m1 = m2 andn1 = n2. Next,

99

the meaning of the partial order defined by the second order cone lies in this set when both

arguments are the same size and are vectors. The typing rulesalso require this. Finally,

the meaning of the partial order defined by the cone of positive semidefinite matrices lies

in the above set when both arguments are the same size, square, and symmetric. However,

again, each of these requirements is enforced by the typing rules. Therefore, the meaning

each of these functions is sound.

Now, we evaluate addition. We must verify that

�

Γ ⊢ + :
{

{〈c, p,m, o〉mn
i j , y}

}2

k
→ {〈c, p,m, o〉mn

i j , y}
�

∈
�

{

{〈c, p,m, o〉mn
i j , y}

}2

k
→ {〈c, p,m, o〉mn

i j , y}
�

for each typing combination on page 46 where we define that

�

Γ ⊢ + :
{

{〈c, p,m, o〉mn
i j , y}

}2

k
→ {〈c, p,m, o〉mn

i j , y}
�

= f , g 7→ (x 7→ f (x) + g(x))

Certainly, matrix addition can be defined pointwise. Thus, the soundness of each pointwise

function follows from soundness of the scalar version of addition. We still must verify that

both arguments have the same size and determine when the resulting function is symmetric.

The typing rules require thatm1 = m2 andn1 = n2. Thus, the composition is well-formed.

In addition, wheny1 = y2 = ‡, by induction, we know that both arguments must be sym-

metric. But, certainly the sum of two symmetric functions remains symmetric. Therefore,

the meaning of addition is sound.

100

Next, we consider negation. We must ascertain whether

�

Γ ⊢ − :
{

{〈c, p,m, o〉mn
i j , y}

}1

k
→ {〈c, p,m, o〉mn

i j , y}
�

∈
�

{

{〈c, p,m, o〉mn
i j , y}

}1

k
→ {〈c, p,m, o〉mn

i j , y}
�

for all typing combinations on page 46 where we define

�

Γ ⊢ − :
{

{〈c, p,m, o〉mn
i j , y}

}1

k
→ {〈c, p,m, o〉mn

i j , y}
�

= f 7→ (x 7→ − f (x))

Like addition, we define matrix negation pointwise. Therefore, the soundness of each

pointwise function follows from the soundness of scalar negation. Now, we must verify

that the input and output arguments have the same size and determine when the output is

symmetric. Since we require thatm= m1 andn = n1, the composition will be well-formed.

Also, wheny1 = ‡, by induction we know that the argument is symmetric. Since the

negation of a symmetric matrix is also symmetric and we require thaty = ‡ in this case,

the meaning of negation is sound.

Now, we can examine subtraction. However, since we define subtraction by combining

addition and negation and these functions are sound, the soundness of subtraction immedi-

ately follows.

We define the multiplication of a matrix by a scalar as

�

Γ ⊢ ∗ :
{

{〈c, p,m, o〉mn
i j , y}

}2

k
→ {〈c, p,m, o〉mn

i j , y}
�

= f , g 7→ (x 7→ f (x)g(x))

101

and must verify that

�

Γ ⊢ ∗ :
{

{〈c, p,m, o〉mn
i j , y}

}2

k
→ {〈c, p,m, o〉mn

i j , y}
�

∈
�

{

{〈c, p,m, o〉mn
i j , y}

}2

k
→ {〈c, p,m, o〉mn

i j , y}
�

As with our other functions, this operation is defined pointwise on each element. Thus, the

soundness of each pointwise property follows from the soundness of scalar multiplication.

The typing rules also require that one of the arguments be scalar and that the size of the

output must align with the matrix argument. Thus, the composition is well-formed. Finally,

we know that a scaled symmetric matrix remains symmetric. But, the typing rules also state

thaty = y1. Hence, the meaning of scalar multiplication is sound.

Similarly, we define the division of a matrix by a scalar as

�

Γ ⊢ / :
{

{〈c, p,m, o〉mn
i j , y}

}2

k
→ {〈c, p,m, o〉mn

i j , y}
�

= f , g 7→ (x 7→ f (x)/g(x))

and must verify that

�

Γ ⊢ / :
{

{〈c, p,m, o〉mn
i j , y}

}2

k
→ {〈c, p,m, o〉mn

i j , y}
�

∈
�

{

{〈c, p,m, o〉mn
i j , y}

}2

k
→ {〈c, p,m, o〉mn

i j , y}
�

This case follows identically to scalar multiplication where the soundness follows from

soundness of scalar division.

102

Next we consider submatrixing. We must determine whether

�

Γ ⊢ ··:·,·:· :
{

{〈c, p,m, o〉mn
i j , y}

}1

k
, {η}4k → {〈c, p,m, o〉mn

i j , y}
�

∈
�

{

{〈c, p,m, o〉mn
i j , y}

}1

k
, {η}4k → {〈c, p,m, o〉mn

i j , y}
�

where we define that

�

Γ ⊢ ··:·,·:· :
{

{〈c, p,m, o〉mn
i j , y}

}1

k
, {η}4k → {〈c, p,m, o〉mn

i j , y}
�

= f , a, b, c, d 7→ fa:b,c:d(x)

Submatrixing doesn’t change any of the pointwise properties; it merely selects certain ele-

ments. Thus, as long as we select the correct elements, the soundness of the pointwise prop-

erties follows from induction. We state that type of the (i, j)th element is that off(i+η1)(j+η3)

where f is the first argument. This aligns with the definition of submatrixing, so the point-

wise properties are sound. Next, we must check the size of theresult and conclude when

it is symmetry. We require thatm1 ≥ η3 ≥ η1 andn1 ≥ η4 ≥ η2. Further, we state that

m = η2 − η1 + 1 andn = η4 − η3 + 1. So, we can not have any negatively sized matrices

nor can the result be larger than the input. Since this size also matches the definition of

submatrixing, the definition of size is sound. Further, wheny1 = ‡, by induction we know

that the input is symmetric. Thus, all of the principle submatrices are symmetric. This

occurs whenη1 = η3 andη2 = η4. But, in this case, we state thaty = ‡. Thus, the meaning

of submatrixing is sound.

The meaning of subindexing, save symmetry, is defined in terms of submatrixing. Since

the result is scalar, it must be symmetric. Therefore, sincethe meaning of submatrixing is

103

sound, the soundness of subindexing immediately follows.

We define the meaning of matrix multiplication as

�

Γ ⊢ ∗ :
{

{〈c, p,m, o〉mn
i j , y}

}2

k
→ {〈c, p,m, o〉mn

i j , y}
�

= f , g 7→ (x 7→ f (x)g(x))

We must verify that

�

Γ ⊢ ∗ :
{

{〈c, p,m, o〉mn
i j , y}

}2

k
→ {〈c, p,m, o〉mn

i j , y}
�

∈
�

{

{〈c, p,m, o〉mn
i j , y}

}2

k
→ {〈c, p,m, o〉mn

i j , y}
�

for each type combination on page 49. We defined these type combinations in terms of

addition, scalar multiplication, and submatrixing. Sincethe meaning of each of these op-

erations is sound and matrix multiplication is defined by these operations, the meaning of

multiplication is sound.

We give the meaning of absolute value as

�

Γ ⊢ | · | :
{

{〈c, p,m, o〉mn
i j , y}

}1

k
→ {〈c, p,m, o〉mn

i j , y}
�

= f 7→ (x 7→ Y) whereYi j = | fi j (x)|

We must determine that

�

Γ ⊢ | · | :
{

{〈c, p,m, o〉mn
i j , y}

}1

k
→ {〈c, p,m, o〉mn

i j , y}
�

∈
�

{

{〈c, p,m, o〉mn
i j , y}

}1

k
→ {〈c, p,m, o〉mn

i j , y}
�

for all defined typing combinations on page 50. Since the absolute value function is defined

104

pointwise by the scalar absolute value function, the soundness of each pointwise property

follows. We simply need to check the size and determine when the result is symmetric.

Our definition above requires that the input and output have identical size. But, we require

this during typing sincem = m1 andn = n1. Further, the result must be symmetric when

the input is symmetric. But, we require thaty = y1. Thus, the meaning of absolute value is

sound.

Next, we define the meaning of elementwise maximum as

�

Γ ⊢ max:
{

{〈c, p,m, o〉mn
i j , y}

}1

k
→ 〈c, p,m, o〉

�

= f 7→
(

x 7→ max
i, j

fi j (x)

)

and must verify that

�

Γ ⊢ max:
{

{〈c, p,m, o〉mn
i j , y}

}1

k
→ 〈c, p,m, o〉

�

∈
�

{

{〈c, p,m, o〉mn
i j , y}

}1

k
→ 〈c, p,m, o〉

�

for each typing combination on page 50. Notice that we can equivalently define element-

wise maximum with binary maximum using the following recursive application

max(f)

= max(f11,max(f21, . . . ,max(fm1,max(f12, . . . ,max(fm−1,n, fmn) . . .) . . .) . . .) . . .)

Thus, the soundness of elementwise maximum follows from thesoundness of binary max-

imum. In the degenerate case, whenm = n = 1, maxi, j fi j (x) = f11(x). In this case,

soundness follows from induction. Therefore, the meaning of elementwise maximum is

105

sound.

The meaning of elementwise minimum follows in the exact samemanner as element-

wise maximum. Its soundness follows from the soundness of binary minimum.

We recount the meaning summation as

�

Γ ⊢ sum:
{

{〈c, p,m, o〉mn
i j , y}

}1

k
→ 〈c, p,m, o〉

�

= f 7→
(

x 7→ ∑

i, j
fi j (x)

)

We must see if
�

Γ ⊢ sum:
{

{〈c, p,m, o〉mn
i j , y}

}1

k
→ 〈c, p,m, o〉

�

∈
�

{

{〈c, p,m, o〉mn
i j , y}

}1

k
→ 〈c, p,m, o〉

�

for all typing combinations on page 51. Similar to elementwise minimum and maximum,

we notice that we can define summation using the following recursive definition

sum(f) = f11 + f21 + · · · + fm1 + f12 + · · · + fm−1,n + fmn

Therefore, the soundness of summation follows the soundness of addition. Further, when

m1 = n1 = 1, we sum nothing and the soundness follows from induction. Therefore, the

meaning of summation is sound.

106

Next, we recall the meaning of each definedp-norm as

�

Γ ⊢ ‖ · ‖∞ :
{

{〈c, p,m, o〉mn
i j , y}

}1

k
→ 〈c, p,m, o〉

�

= f 7→ (x 7→ ‖ f (x)‖∞)

�

Γ ⊢ ‖ · ‖1 :
{

{〈c, p,m, o〉mn
i j , y}

}1

k
→ 〈c, p,m, o〉

�

= f 7→ (x 7→ ‖ f (x)‖1)
�

Γ ⊢ ‖ · ‖2 :
{

{〈c, p,m, o〉mn
i j , y}

}1

k
→ 〈c, p,m, o〉

�

= f 7→ (x 7→ ‖ f (x)‖2)

We must verify that all three of these functions lie within the set

�

{

{〈c, p,m, o〉mn
i j , y}

}1

k
→ 〈c, p,m, o〉

�

for the same set of typing combinations defined above on page 52. For anyp-norm, when

the input is completely constant, the output will also be constant. Simply, it is thep-norm

of the input. Thus, in this case, the output is a constant polynomial. In addition, when this

occurs, we know that the output must also be affine and both increasing and decreasing.

Next, since the definition of a norm requires it to be subadditive and positively homoge-

neous, all norms are convex. As a result, when it is composed with an affine function, the

result must be convex. Finally, composition with this function always returns a real num-

ber. Since these properties align with the type definitions,the meaning of eachp-norm is

sound.

The meaning of transpose is defined as

�

Γ ⊢ ·T :
{

{〈c, p,m, o〉mn
i j , y}

}1

k
→ {〈c, p,m, o〉mn

i j , y}
�

= f 7→ (x 7→ xT)

107

We must check whether this function lies in the set

�

{

{〈c, p,m, o〉mn
i j , y}

}1

k
→ {〈c, p,m, o〉mn

i j , y}
�

for each typing combination formerly defined on page 52. Recall that transpose does not

change the pointwise properties of a matrix valued function. Simply, it rearranges the

elements. In our typing rules, we stipulate thatm = n1, n = m1, and that the type of the

(i, j)th element in the result is equal to the type of the (j, i)th element in the argument.

Further, we require thaty = y1. As this follows the definition of transpose, the meaning is

sound.

Now, we define the meaning of trace as

�

Γ ⊢ tr :
{

{〈c, p,m, o〉mn
i j , y}

}1

k
→ 〈c, p,m, o〉

�

= f 7→ (x 7→ tr(x))

We must show that this function lies within

�

{

{〈c, p,m, o〉mn
i j , y}

}1

k
→ 〈c, p,m, o〉

�

for each typing combination defined above on page 53. We defined these typing combina-

tions in terms of addition and subindexing. As the meaning ofboth addition and subindex-

ing is sound and their combination follows the definition of trace, the meaning of trace

must be sound.

108

Next, we consider the meaning of horizontal concatenation

�

Γ ⊢ [· ·] :
{

{〈c, p,m, o〉mn
i j , y}

}2

k
→ {〈c, p,m, o〉mn

i j , y}
�

= f , g 7→ (x 7→ [f (x) g(x)])

We must verify that this function lies within

�

{

{〈c, p,m, o〉mn
i j , y}

}2

k
→ {〈c, p,m, o〉mn

i j , y}
�

for the typing combinations defined previously on page 53. The horizontal concatenation

of two matrices lies within the set [�m×n1×�m×n2 → �m×n1+n2]. We satisfy this condition by

requiring thatm1 = m2 and specifying thatm= m1, n = n1 + n2. In addition, we clearly see

that pointwise properties of this function are defined byf andg. We denote this fact in our

typing rules when we state that (i, j)th property mirrorsfi j for j ≤ n1 andgi, j−n1, otherwise.

Thus, the meaning of horizontal concatenation is sound.

In a similar manner, we define the meaning of vertical concatenation by

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Γ ⊢































·

·































:
{

{〈c, p,m, o〉mn
i j , y}

}2

k
→ {〈c, p,m, o〉mn

i j , y}

�

�

�

�

�

�

�

�

�

�

�

�

�

�

= f , g 7→































x 7→































f (x)

g(x)





























































We must demonstrate that this function lies within

�

{

{〈c, p,m, o〉mn
i j , y}

}2

k
→ {〈c, p,m, o〉mn

i j , y}
�

109

for each typing combination defined above on page 54. By definition, the vertical concate-

nation of two matrices lies in the set [�m1×n×�m2×n→ �m1+m2×n. We fulfill this requirement

by mandating thatn1 = n2 and defining thatm= m1+m2, n = n1. Similar to horizontal con-

catenation, the functionsf andg define the pointwise properties of the result. We indicate

this property in our typing rules when we define that the (i, j)th property is equal tofi j for

i ≤ m1 andgi−m1, j, otherwise. Therefore, the meaning of vertical concatenation is sound.

In addition, we specify the meaning of symmetric concatenation as

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Γ ⊢































· ·

·































:
{

{〈c, p,m, o〉mn
i j , y}

}3

k
→ {〈c, p,m, o〉mn

i j , y}

�

�

�

�

�

�

�

�

�

�

�

�

�

�

= f , g, h 7→































x 7→































f (x) g(x)

gT(x) h(x)





























































We must check whether this function belongs to the set

�

{

{〈c, p,m, o〉mn
i j , y}

}3

k
→ {〈c, p,m, o〉mn

i j , y}
�

for all typing combinations previously defined on page 54. The symmetric concatenation

of three matrices has size defined by

n1 + n2






































n1

f (x)
m1

n2

g(x)
m2

m2

gT(x)
n2

n3

h(x)
m3







































m2 +m3

Thus, the function requires thatm1 = m2, n2 = n3, n1 = m1 = m2, andn2 = m3 = n3. We

110

also see that the result has sizen1+n2 by m2+m3. Next, we can clearly see that the pointwise

properties of the result depend on the pointwise propertiesof the functions. Consider the

(i, j)th property of the result. When 1≤ i ≤ m1 and 1≤ j ≤ n1, this property is defined

by fi j . Moving to the right, we offset the column index byn1. Thus, when 1≤ i ≤ m1 and

n1 + 1 ≤ j ≤ n1 + n2, the property is specified bygi, j−n1. When considering the lower left

corner, we offset the row index bym1. Therefore, whenm1+1 ≤ i ≤ m1+m3 and 1≤ j ≤ n1,

the functional properties are denoted byg j,i−m1. Finally, we consider the last block, we offset

the row index bym1 and the column index byn1. Thus, whenm1 + 1 ≤ i ≤ m1 +m3 and

n1 + 1 ≤ j ≤ n1 + n2, the pointwise properties are found by analyzinghi−m1, j−n1. Finally,

we must verify symmetry of the result. However, this followsimmediately from the block

structure of the matrix and since bothf (x) andh(x) are symmetric. As these properties

match the type definition, the meaning is sound.

Now, let us recall the meaning of the maximum eigenvalue function

�

Γ;Σ ⊢ λmax :
{

{〈c, p,m, o〉mn
i j , y}

}1

k
→ 〈c, p,m, o〉

�

= f 7→ (x 7→ λmax(f (x)))

We must determine whether this function lies in the set

�

{

{〈c, p,m, o〉mn
i j , y}

}1

k
→ 〈c, p,m, o〉

�

for each typing combination defined before on page 55. For themaximum eigenvalue func-

tion to be well-defined, its argument must be symmetric. Otherwise, complex eigenvalues

111

may exist and the maximum is not defined. We require this by stating thatm1 = n1 and

y = ‡. Next, when the argument is completely constant, we can compute the maximum

eigenvalue directly. In this case, the result of the composition is constant and equal to the

above computation. Also in this situation, the result must be affine and both increasing and

decreasing. Next, we see that the maximum eigenvalue function is convex since

λmax(αX + (1− α)Y) =max
‖z‖2=1

zT(αX + (1− α)Y)z

=max
‖z‖2=1

αzTXz+ (1− α)zTYz

≤max
‖z‖2=1

αzTXz+ max
‖z‖2=1

(1− α)zTYz

=αmax
‖z‖2=1

zTXz+ (1− α) max
‖z‖2=1

zTYz

=αλmax(X) + (1− α)λmax(Y)

Since the composition of a convex function with an affine function is convex, when the

argument is affine, the result must be convex. Since each of these propertiesmatches our

type definitions, our meaning is sound.

Finally, we recollect the definition of the minimum eigenvalue function as

�

Γ;Σ ⊢ λmin :
{

{〈c, p,m, o〉mn
i j , y}

}1

k
→ 〈c, p,m, o〉

�

= f 7→ (x 7→ λmin(f (x)))

We must resolve whether this composition lies within

�

{

{〈c, p,m, o〉mn
i j , y}

}1

k
→ 〈c, p,m, o〉

�

112

based on our definition above on page 56. As with the maximum eigenvalue function,

this function is well-defined only when the argument is square and symmetric. Assum-

ing a well-formed argument, when the argument is constant, we compute the minimum

eigenvalue directly. Therefore, the result must be a constant polynomial, affine, and both

increasing and decreasing. Next, we observe that the minimum eigenvalue function is con-

cave since

λmin(αX + (1− α)Y) = min
‖z‖2=1

zT(αX + (1− α)Y)z

= min
‖z‖2=1

αzTXz+ (1− α)zTYz

≥ min
‖z‖2=1

αzTXz+ min
‖z‖2=1

(1− α)zTYz

=α min
‖z‖2=1

zTXz+ (1− α) min
‖z‖2=1

zTYz

=αλmin(X) + (1− α)λmin(Y)

Therefore, its composition with an affine function is concave. As each of these properties

follows the type definitions, the meaning is sound.

�

Since we compose mathematical programs from expressions, we now have all the re-

sults necessary to prove the soundness of mathematical programs. This is characterized in

the following theorem.

Theorem 2 (Soundness of Mathematical Programs). For Γ ∈ G defined above and any

n ∈ N such thatΓ ⊢ n, ~Γ ⊢ n� ∈ �.

113

Proof. We define that

�

Γ ⊢ min e over Σ st {e}ni
�

= min
x∈A∩B

�

Γ;Σ ⊢ e : 〈c, p,m,�〉� (x)

where A = ~Σ�

B =
n
⋂

i=1
~Γ;Σ ⊢ ei : ^�

This will be a well-formed mathematical program when
�

Γ;Σ ⊢ e : 〈c, p,m,�〉� is a real

scalar function and bothA andB define a feasible region. From the soundness of expres-

sions, we know that
�

Γ;Σ ⊢ e : 〈c, p,m,�〉� is a real scalar function with a domain defined

by Σ. In addition, the soundness of expressions insures thatB defines a feasible region. We

simply need to verify that~Σ� defines a feasible region. By definition,

�

{xi : di}ni=1

�

=
n
∏

i=1
~di�

But, this is trivially a feasible region. Therefore, the mathematical program is well-formed.

Of course, it is possible that the feasible region is empty orthe solution is unbounded.

When there are no feasible points, we say that the solution is+∞. When the solution is

unbounded, we say that the solution is−∞. Then, by real, we really mean the extended

real numbers. Using this definition, the meaning of mathematical programs is sound. �

Related to soundness is completeness. Although neither mathematical programs nor

expressions are complete, the incompleteness of mathematical programs does not stem

from the incompleteness of expressions. We see this in the following two theorems.

114

Theorem 3(Incompleteness of Mathematical Programs). For any arbitraryα ∈ �, we can

not necessarily construct an n∈ N such that forΓ ∈ G that contains all previously defined

builtin-in functions,~Γ ⊢ n� = α.

Proof. Simply, there are an uncountable number of real numbers. Since our language can

only represent a countable number of programs, the languagecan not possibly be complete.

�

The above proof does not give much information as to how complete our language truly is.

The following theorem gives far more insight

Theorem 4(Completeness of Mathematical Programs with Respect to Rationals). For any

arbitrary α ∈ �, there exists n∈ N such that forΓ ∈ G that contains all previously defined

builtin-in functions,~Γ ⊢ n� = α.

Proof. Let α be any rational number. Then notice that

�

Γ ⊢ min α over x : �1×1 st {}
�

= min
x∈�
α = α

�

This result is slightly surprising since it holds even when we do not define any built-in func-

tions. Further, it does not require completeness of expressions since we only use rational

constants.

Of course, incompleteness of mathematical programs is not particularly restrictive. We

wish to accurately represent problems using a mathematicalprogram, not construct trivial

115

examples that give a particular result. Our ability to represent problems is directly related

to the functions we have available. Thus, the completeness of expressions gives far more

information about the richness of the language. These results are summarized in the fol-

lowing theorem.

Theorem 5 (Incompleteness of Expressions). For any arbitrary τ ∈ ⋃

t∈T t, we can not

necessarily construct aΣ ∈ S , e∈ E, and t ∈ T such that forΓ ∈ G that contains all

previously defined builtin-in functions,~Γ;Σ ⊢ e : t� = τ.

Proof. The set
⋃

t∈T t contains an uncountable number of model functions. Since our lan-

guage can only define a countable number of built-in functions, expressions can not be

complete.

�

With a sufficiently thorough set of base functions, expressions becomefar more complete.

Since there are an uncountable number of model functions, wecan never achieve full com-

pleteness. However, we can define enough functions to make the language useful.

Unfortunately, there is a more subtle problem with our language. Even if we can rep-

resent a function, the type of that function may be more general than necessary. In other

words, a function may possess a property, but our type systemcan not prove the result. For

example, letΓ = x : �1×1 and consider the expressionx ∗ x ∗ x. This expression has type

116

〈⊥,⊥,⊥,�〉 since

(Mult1) (Var)

(Mult2) (Var) (Var)

Γ;Σ ⊢ x ∗ x : 〈∪, (0, 0, 1),⊥,�〉

Γ;Σ ⊢ x ∗ x ∗ x : 〈⊥,⊥,⊥,�〉

Γ;Σ ⊢ x : 〈/, (0, 1),ր,�〉 (Var)

Γ ⊢ ∗ : {〈/, (0, 1),ր,�〉, 〈∪, (0, 0, 1),⊥,�〉} → 〈⊥,⊥,⊥,�〉 (Mult1)

Γ ⊢ ∗ : {〈/, (0, 1),ր,�〉, 〈/, (0, 1),ր,�〉} → 〈∪, (0, 0, 1),⊥,�〉 (Mult2)

Yet, f = x 7→ x ∗ x ∗ x is monotonically increasing sincef ′(x) = 3x2 ≥ 0 for all x. We can

further see that this is not simply a problem with monotonicity. Consider the expression

x ∗ x ∗ x ∗ x. This expression has type〈⊥,⊥,⊥,�〉 since

(Mult3) (Var) Γ;Σ ⊢ x ∗ x ∗ x : 〈⊥,⊥,⊥,�〉

Γ;Σ ⊢ x ∗ x ∗ x ∗ x : 〈⊥,⊥,⊥,�〉

Γ ⊢ ∗ : {〈/, (0, 1),ր,�〉, 〈⊥,⊥,⊥,�〉} → 〈⊥,⊥,⊥,�〉 (Mult3)

Yet, f = x 7→ x ∗ x ∗ x ∗ x is convex sincef ′′(x) = 12x2 ≥ 0 for all x. Finally, we can see

117

that we also have the same problem with polynomality since

(Div) (Var) Γ;Σ ⊢ x ∗ x ∗ x : 〈⊥,⊥,⊥,�〉

Γ;Σ ⊢ x ∗ x ∗ x/x : 〈⊥,⊥,⊥,�〉

Γ ⊢ / : {〈⊥,⊥,⊥,�〉, 〈/, (0, 1),ր,�〉} → 〈⊥,⊥,⊥,�〉 (Div)

Yet, f = x 7→ x ∗ x ∗ x/x = x2 is obviously quadratic.

118

Chapter 6

Transformations

In the following section we will establish a series of important transformations and re-

laxations used in mathematical programming. We begin by describing each transformation.

Then, we will show that each transformation does not change the meaning of a mathemati-

cal program.

6.1 Absolute Value

We can transform an inequality containing the absolute value function into multiple in-

equalities that contain linear functions. Consider the case wherex is scalar. The constraint

y ≥ |x| states thaty must be greater than both the positive and negative components of x.

Thus, we can add each of these requirements as a separate constraint.

We generalize this concept in the following transformation

T (Γ;Σ ⊢ e1 ��+ |e2| : ^) = Γ;Σ ⊢ e1 ��+ e2 : ^,

Γ;Σ ⊢ e1 ��+ −e2 : ^

119

We see these two representations are equivalent since

�

Γ;Σ ⊢ e1 ��+ |e2| : ^
�

={x : f (x) ��+ |g(x)|}

={x : fi j (x) ≥ |gi j (x)|}

={x : fi j (x) ≥ gi j (x), fi j (x) ≥ −gi j (x)}

={x : f (x) ��+ g(x), f (x) ��+ −g(x)}

={x : f (x) ��+ g(x)} ∩ {x : f (x) ��+ −g(x)}

=
�

Γ;Σ ⊢ e1 ��+ e2 : ^, Γ;Σ ⊢ e1 ��+ −e2 : ^
�

=
�T (Γ;Σ ⊢ e1 ��+ |e2| : ^)

�

where 1≤ i ≤ m and 1≤ j ≤ n.

6.2 Expanding an Inequality

This transformation lies at the heart of many other transformations. Consider the case

where we have a constraint of the formz≥ x+ |y|. We would like to transform the absolute

value function, but this constraint does not follow the format defined above. Recall, we

defined the absolute value transformation only for constraints of the form

Γ;Σ ⊢ e1 ��+ |e2| : ^

120

In our current example, we have a constraint of the form

Γ;Σ ⊢ e1 � add(x, |y|) : ^

Thus, we can not immediately access the absolute value function since it is encapsulated

within addition. Fortunately, we can reach it by adding an auxiliary variable. This allows

us to replace the above constraint by the pair

z≥ x+ t

t ≥ |y|

Then, we can reformulate the constraintt ≥ |y| using the transformation defined above.

We define our strategy according to the following rules. Consider a constraint of the

form

h(x) ��+ f (g1(x), . . . , gm(x))

wherex ∈ ∏n
k=1Dk andDk ∈ {�m×n,Sm,�m×n, {0, 1}m×n, {−1, 1}m×n}. Define the extraction

setE to be the set of all indices that correspond to functions,gi, that are neither constant

nor a projection of the original variables. In this case, there is no benefit in extracting the

function. Letĝi be a new candidate set of arguments where

ĝi(y) =































gi(πx(y)) i < E

yκ(i) i ∈ E

121

We defineκ to be an injective function fromE to the set{n + 1, . . . , n + |E|} and y ∈
∏n

k=1Dk×
∏n+|E|

k=n+1�
mk×nk wheremκ(i) andnκ(i) match the size of the codomain ofgi. We also

defineπx :
∏n

k=1Dk×
∏n+|E|

k=n+1�
mk×nk →∏n

k=1�
mk×nk to be the projection where (πx(y))k = yk

for k = 1 . . .n. In other words, we project out the original domain of each function. This

allows us to expand the domain of all functions to include thenew auxiliary variables.

Then, when the function

y 7→ f (ĝ1(y), . . . , ĝm(y))

is monotonically increasing, we may reformulate the constraint into

h(πx(y)) ��+ f (ĝ1(y), . . . , ĝm(y))

yκ(i) ��+ gi(πx(y))

for i ∈ E.

Let us apply this procedure to the constraintz≥ x+ |y|. We can rewrite this function as

x1 ≥ x2 + |x3| for x ∈ �3. Now, since the first argument to addition is a decision variable,

we do not expand it. Alternatively, the second argument is neither constant nor a decision

variable, so we must expand it. Thus, our candidate set of arguments is

ĝ1(y) = [πx(y)]3 = y3

ĝ2(y) = y4

122

whereπx : �4→ �3 and [πx(y)]k = yk for k = 1, 2, 3. The function

y ∈ �4 7→ y3 + y4

is monotonically increasing. Thus, we may expand the above constraint into

y1 ≥ y2 + y4

y4 ≥ |y3|

which is our desired reformulation.

Before we prove the correctness of this transformation, letus consider one additional

example. Ruminate over the constraintx ≥ f (4, |x|, 7) wheref (x, y, z) = xyz. According to

the above expansion rules, we can reformulate this constraint into

x ≥ 4(y)7

y ≥ |x|

Although we can easily see that this set of constraints is equivalent to the original, this

example is interesting sincef is not monotonically increasing. That is why we are careful

to distinguish whenf is increasing and when the compositionx 7→ f (ĝ1(x), . . . , ĝm(x)) is

increasing.

123

We must prove this strategy produces an equivalent feasibleregion. Let

x ∈














x ∈
n

∏

k=1

Dk : h(x) ��+ f (g1(x), . . . , gm(x))















We must show that there exists

y ∈














y ∈
n

∏

k=1

Dk ×
n+|E|
∏

k=n+1

�mk×nk : h(πx(y)) ��+ f (ĝ1(y), . . . , ĝm(y)), yκ(i) ��+ gi(πx(y)), i ∈ E















such thatπx(y) = x. Choosey such thatyi = xi for i = 1 . . .n andyκ(i) = gi(x) for i ∈ E.

Certainly, x = πx(y). Therefore, we must check thaty lies in the reformulated feasible

region. Combining the rules of the transformational strategy and our definition ofy we see

that

ĝi(y) = gi(πx(y)) = gi(x)

for i < E and

ĝi(y) = yκ(i) = gi(x)

for i ∈ E. In other words, ˆgi(y) = gi(x) for all i. Thus,

h(πx(y)) = h(x) ��+ f (g1(x), . . . , gm(x)) = f (ĝ1(y), . . . , ĝm(y))

This shows that we satisfy the first constraint in our reformulated region. Now, we must

verify that we satisfy the remaining constraints. Sinceyκ(i) = gi(x) = gi(πx(y)), for i ∈ E,

124

we see that

yκ(i) = gi(x) = gi(πx(y)) ��+ gi(πx(y))

Thus, we satisfy the remaining constraints. Therefore,y is feasible and a projection of

the reformulated feasible region is a subset of the originalfeasible region. In the reverse

direction, we take

y ∈














y ∈
n

∏

k=1

Dk ×
n+|E|
∏

k=n+1

�mk×nk : h(πx(y)) ��+ f (ĝ1(y), . . . , ĝm(y)), yκ(i) ��+ gi(πx(y)), i ∈ E















We must show that there exists

x ∈














x ∈
n

∏

k=1

Dk : h(x) ��+ f (g1(x), . . . , gm(x))















such thatx = πx(y). Choosex such thatx = πx(y). We must show thatx lies within the

original feasible region. Choose ˜y such that ˜yκ(i) = gi(πx(y)) for i ∈ E and ỹi = yi for

i ∈ {1, . . . , n}. Notice that ˜y possesses three properties. First, we see thatπx(ỹ) = x since

ỹi = yi for i ∈ {1, . . . , n}. Second, we know thaty ��+ ỹ sinceyκ(i) ��+ gi(πx(y)) = ỹκ(i)

for i ∈ E and yi = ỹi for i ∈ {1, . . . , n}. Third, we have that ˆgi(ỹ) = gi(πx(ỹ)) since

ĝi(ỹ) = ỹκ(i) = gi(πx(y)) = gi(x) = gi(πx(ỹ)) for i ∈ E andĝi(ỹ) = gi(πx(ỹ)) for i < E. Since

125

the functiony 7→ f (ĝ1(y), . . . , ĝm(y)) is monotonically increasing, we have that

h(x) = h(πx(y)) ��+ f (ĝ1(y), . . . , ĝm(y))

��+ f (ĝ1(ỹ), . . . , ĝm(ỹ))

= f (g1(πx(ỹ)), . . . , gm(πx(ỹ)))

= f (g1(x), . . . , gm(x))

Therefore,x is feasible and the original feasible region is a subset of a projection of the

reformulated feasible region. Hence, both feasible regions are equivalent up to a projection.

We define this transformation formally as

T (Γ;Σ ⊢ e0 ��+ f {e}mi : ^) = Γ; Σ̂ ⊢ e0 ��+ f {ê}mi : ^, {Γ; Σ̂ ⊢ xκ(·) ��+ e : ^}i∈E

when

Γ; Σ̂ ⊢ f {ê}mi : {〈c, p,ր, o〉st
i j , y}

126

where

Σ = {x}nj

Σ̂ = {x}n+|E|j

êi =



















































xj ei = xj

A ei = A

xκ(i) otherwise

E = {i : ei , xj , ei , A}

andκ is an injective function betweenE and{n+ 1, . . . , n+ |E|}.

In order to show that these two formulations are equivalent,we begin by noting that we

have have already shown that

�

Γ;Σ ⊢ e0 ��+ f {e}mi : ^
�

=















x ∈
n

∏

k=1

Dk : h(x) ��+ f (g1(x), . . . , gm(x))















=πx















y ∈
n

∏

k=1

Dk ×
n+|E|
∏

k=n+1

�mk×nk : h(πx(y)) ��+ f (ĝ1(y), . . . , ĝm(y)), yκ(i) ��+ gi(πx(y)), i ∈ E















=πx

�

Γ; Σ̂ ⊢ e0 ��+ f {ê}mi : ^, {Γ; Σ̂ ⊢ xκ(·) ��+ e : ^}i∈E
�

as long asx 7→ f (ĝ1(y), . . . , ĝm(y)) is monotonically increasing. However, we assume that

Γ; Σ̂ ⊢ f {ê}mi : {〈c, p,ր, o〉st
i j , y}

127

Since our semantics are sound, this implies that

x 7→ f (ĝ1(x), . . . , ĝm(x))

∈
�

{〈c, p,ր, o〉st
i j , y}
�

=
{

f ∈ [

s→ �s×t] ∩ �y� : fi j ∈
�

ci j

�

∩
�

pi j

�

∩ ~ր� ∩
{

g ∈
[

s→
�

oi j

�]}}

s∈S

Thus, the functionx 7→ f (ĝ1(x), . . . , ĝm(x)) is monotonically increasing. Therefore, both

formulations are equivalent up to a projection.

There are three other related transformations. First, we define that

T (Γ;Σ ⊢ e0 ��+ f {e}mi : ^) = Γ; Σ̂ ⊢ e0 ��+ f {ê}mi : ^, {Γ; Σ̂ ⊢ e��+ xκ(·) : ^}i∈E

when

Γ; Σ̂ ⊢ f {ê}mi : {〈c, p,ց, o〉st
i j , y}

This is equivalent to the first transformation except that the composition

x 7→ f (ĝ1(x), . . . , ĝm(x)) is monotonically decreasing. Second, we also define that

T (Γ;Σ ⊢ f {e}mi ��+ e0 : ^) = Γ; Σ̂ ⊢ f {ê}mi ��+ e0 : ^, {Γ; Σ̂ ⊢ e��+ xκ(·) : ^}i∈E

when

Γ; Σ̂ ⊢ f {ê}mi : {〈c, p,ր, o〉st
i j , y}

128

This is equivalent to the first transformation except that weexpand the left hand side instead

of the right. Finally, we define that

T (Γ;Σ ⊢ f {e}mi ��+ e0 : ^) = Γ; Σ̂ ⊢ f {ê}mi ��+ e0 : ^, {Γ; Σ̂ ⊢ xκ(·) ��+ e : ^}i∈E

when

Γ; Σ̂ ⊢ f {ê}mi : {〈c, p,ց, o〉st
i j , y}

We see this transformation is identical to the original except that we expand the left hand

side and the composition is decreasing. The proof that each of these transformations pro-

duces an equivalent feasible region follows in a manner similar to the proof above.

6.3 Expanding an Equality

We expand an inequality constraint by adding a set of new auxiliary variables and in-

equality constraints. While this constitutes a valid transformation, we could add equality

constraints instead. For example, we could expand the constraintz≥ x+|y| into z≥ x+t and

t = |x|. In fact, we can always add an equality constraint regardless if the original function

is monotonic. Unfortunately, in most instances, this makesthe problem more difficult to

solve. For example, the constraintt = |x| is not convex while the inequalityt ≥ |x| preserves

convexity. Therefore, we only want use this transformationwhen the new constraint, not

the original, is convex. This occurs only when the left and right hand sides of the new

constraint are affine.

129

We formalize this strategy according to the following rules. Consider a constraint of

the form

h(x) R f (g1(x), . . . , gm(x))

wherex ∈ ∏n
k=1�

mk×nk and R denotes an arbitrary relation. Let the extraction setE be the

set of all indices where the functiongi is affine. Letĝi be the new set of arguments where

ĝi(y) =































gi(πx(y)) i < E

yκ(i) i ∈ E

where we defineκ, πx, andy analogously to our discussion above. Then, we may reformu-

late the above constraint into

h(πx(y)) R f (ĝ1(y), . . . , ĝm(y))

yκ(i) = gi(πx(y))

for i ∈ E.

We must prove this transformation produces an equivalent feasible region. Let

x ∈














x ∈
n

∏

k=1

Dk : h(x) R f (g1(x), . . . , gm(x))















130

We must show that there exists

y ∈














y ∈
n

∏

k=1

Dk ×
n+|E|
∏

k=n+1

�mk×nk : h(πx(y)) R f (ĝ1(y), . . . , ĝm(y)), yκ(i) = gi(πx(y)), i ∈ E















such thatπx(y) = x. Choosey such thatyi = xi for i = 1 . . .n andyκ(i) = gi(x) for i ∈ E. We

immediately see thatπx(y) = x. Thus, we must verify thaty lies within the reformulated

feasible region. By combining the rules of the transformational strategy and our definition

of y, we have that

ĝi(y) = gi(πx(y)) = gi(x)

for i < E and

ĝi(y) = yκ(i) = gi(x)

for i ∈ E. Thus,ĝi(y) = gi(x) for all i. Therefore,

h(πx(y)) = h(x) R f (g1(x), . . . , gm(x)) = f (ĝ1(y), . . . , ĝm(y))

Therefore, we satisfy the first constraint. Now, we must verify that we satisfy the remaining

constraints. By construction,

yκ(i) = gi(x)

for i ∈ E. Therefore,y lies within the reformulated feasible region and a projection of

the reformulated feasible region is a subset of the originalfeasible region. In the reverse

131

direction, we take

y ∈














y ∈
n

∏

k=1

Dk ×
n+|E|
∏

k=n+1

�mk×nk : h(πx(y)) R f (ĝ1(y), . . . , ĝm(y)), yκ(i) = gi(πx(y)), i ∈ E















We must show there exist

x ∈














x ∈
n

∏

k=1

Dk : h(x) R f (g1(x), . . . , gm(x))















such thatx = πx(y). Choosex such thatx = πx(y). We must demonstrate thatx lies

within the original feasible region. Since ˆgi(y) = yκ(i) = gi(πx(y)) = gi(x) for i ∈ E and

ĝi(y) = gi(πx(y)) = gi(x) for i < E, we know that ˆgi(y) = gi(x) for all i. Thus, we have that

h(x) = h(πx(y)) R f (ĝ1(y), . . . , ĝm(y))

= f (g1(x), . . . , gm(x))

Thus,x lies within the original feasible region and the original feasible region is a subset

of a projection of the reformulated feasible region. Therefore, both feasible regions are

equivalent up to a projection.

We define this expansion transformation formally as

T (Γ;Σ ⊢ e0 R f {e}mi : ^) = Γ; Σ̂ ⊢ e0 R f {ê}mi : ^, {Γ; Σ̂ ⊢ xκ(·) = e : ^}i∈E

132

where

Σ = {x}nj

Σ̂ = {x}n+|E|j

êi =































xκ(i) Γ;Σ ⊢ ei : {〈/, p,m, o〉st
i j , y}

ei otherwise

E =
{

i : Γ;Σ ⊢ ei : {〈/, p,m, o〉st
i j , y}

}

andκ is an injective function betweenE and{n+ 1, . . . , n+ |E|}.

In order to prove that these two formulations are equivalent, we notice that

�

Γ;Σ ⊢ e0 R f {e}mi : ^
�

=















x ∈
n

∏

k=1

�mk×nk : h(x) R f (g1(x), . . . , gm(x))















=πx















y ∈
n

∏

k=1

Dk ×
n+|E|
∏

k=n+1

�mk×nk : h(πx(y)) R f (ĝ1(y), . . . , ĝm(y)), yκ(i) = gi(πx(y)), i ∈ E















=πx

�

Γ; Σ̂ ⊢ e0 R f {ê}mi : ^, {Γ; Σ̂ ⊢ xκ(·) = e : ^}i∈E
�

Therefore, both formulations are equivalent up to a projection.

We have one additional transformation intimately related to the first

T (Γ;Σ ⊢ f {e}mi R e0 : ^) = Γ; Σ̂ ⊢ f {ê}mi R e0 : ^, {Γ; Σ̂ ⊢ xκ(·) = e : ^}i∈E

133

where we define the extraction setE as above. Simply, we reverse the left and right hand

sides. We can prove the correctness of this transformation using a similar argument as

above.

6.4 Contracting a Single Auxiliary Variable and a Single Inequality

The transformational process requires that we expand most constraints before we can

effectively transform them. As a byproduct of this process, we dramatically increase the

size of the problem. Although the resulting problem is extremely sparse, we prefer that our

final result be smaller. We term the process of eliminating constraints and auxiliary vari-

ables as contraction. In general, determining redundant constraints is extremely difficult.

Our focus will be on eliminating the sort of constraint generated by expansion.

Consider the problem

min
(x,y,z,t)∈�4

z

st z≥ x+ t

t ≥ |y|

x ≥ 0

By inspection, we can see that optimal value is 0 and the optimal solution is (0, 0, 0, 0).

134

Noticing the exposed absolute value, we reformulate this problem into

min
(x,y,z,t)∈�4

z

st z≥ x+ t

t ≥ y

t ≥ −y

x ≥ 0

At this point, we observe that we use the variablet in only three places: the constraints

z ≥ x + t, t ≥ y, andt ≥ −y. In addition, the function (x, y, z, t) 7→ x + t is monotonically

increasing. Thus, we can contract the variablet and reformulate the problem into

min
(x,y,z)∈�3

z

st z≥ x+ y

z≥ x− y

x ≥ 0

We can see this problem also has an optimal value of 0 and a solution of (0, 0, 0).

135

We codify this process in the following steps. Consider a problem of the form

min
y∈A∩B

f (y)

where A =
n
∏

k=1
Dk

B =
s
⋂

i=1
{y : gi(y) R hi(y)}∩

{y : g(y) ��+ h(y)}∩
t
⋂

j=1
{y : yq ��+ vj(y)}

for some fixedq ∈ {1, . . . , n} where R denotes an arbitrary relation and we defineDk as

above. This problem has the same optimal value as

min
x∈Â∩B̂

f (πy(x))

where Â =

(

q−1
∏

k=1
Dk

)

×
(

n
∏

k=q+1
Dk

)

B̂ =
s
⋂

i=1
{x : gi(πy(x)) R hi(πy(x))}∩

t
⋂

j=1
{x : g(πy(x)) ��+ h(π j(x))}

where we define the injectionπy : Â→ A as

[πy(x)]k =























































xk k < q

sup
j

vj(x1, . . . , xq−1, 0, xq, . . . , xn−1) k = q

xk−1 k ≥ q

136

and the injectionπ j : Â→ A as

[π j(x)]k =



















































xk k < q

vj(x1, . . . , xq−1, 0, xq, . . . , xn−1) k = q

xk−1 k ≥ q

In addition, we must satisfy the following conditions. First, we require thatf (y) = f (z),

gi(y) = gi(z), g(y) = g(z), andv(y) = v(z) for all y, z ∈ A whereyk = zk for all k saveq.

In other words, the only function that may depend onyq must beh. Second, the functionh

must be monotonically increasing.

We must prove both formulations produce the same optimal value. Define the projection

πx : A → Â by [πx(y)]k = yk whenk < q and [πx(y)]k = yk+1 whenk ≥ q. Our argument

adheres to the following steps. First, take an optimal solution to the original problem,y∗.

Then, show thatπx(y∗) is feasible in the reformulated problem. Since the objective function

does not depend onyq, this tells us that the optimal value of the reformulated problem is less

than or equal to the original. Second, take an optimal solution to the reformulated problem,

x∗. Show thatπy(x∗) is feasible in the original problem. Again, since the objective function

does not depend onyq, the optimal value of the original problem must be less than or equal

to the reformulated. Therefore, both problems must possessthe same optimal value.

Let y∗ be optimal in the original problem and consider the pointx = πx(y∗). We must

show thatx is feasible in the reformulated problem. Sincegi andhi do not depend onyq,

we satisfy the constraintgi(πy(x)) R hi(πy(x)). Therefore, we must show thatg(πy(x)) ��+

137

h(π j(x)). Sincey∗q ��+ vj(y∗) for all j, we know thaty∗q ��+ supj vj(y∗) = [πy(x)]q. Hence,

y∗ ��+ πy(x). Sinceh is increasing, we observe that

g(πy(x)) = g(y∗) ��+ h(y∗) ��+ h(πy(x)) ��+ h(π j(x))

Thus, we have shown thatx is feasible in the reformulated problem. Since the objective

function does not depend onyq, f (y∗) = f (πy(x)). Therefore, the optimal value of the

reformulated problem must be less than or equal to the original.

Let x∗ be optimal in the reformulated problem and consider the point y = πy(x∗). We

must show thaty is feasible in the original problem. Sincegi andhi do not depend onyq,

we satisfy the constraintgi(y) R hi(y). Thus, we must demonstrate thatg(y) ��+ h(y) and

thatyq ��+ vi(y). First, we see that

g(y) = g(πy(x
∗)) ��+ h(πy(x

∗)) = h(y)

We also see that

yq = [πy(x
∗)]q = sup

j
vj(x

∗
1, . . . , x

∗
q−1, 0, x

∗
q, . . . , x

∗
n−1) = sup

j
vj(y) ��+ vj(y)

Thus, we see thaty is feasible in the original problem. Since the objective function does

not depend onyq, we see thatf (πy(x∗)) = f (y). Hence, the optimal value of the original

problem must be less than or equal to the reformulated. However, combined with the first

part of our argument, this implies that both problems possess the same optimal value.

138

We define this transformation formally with the following

T
(

Γ ⊢ min e over {x : d}nk st {e}si , ê1 ��+ ê2, {xq ��+ êj}tj
)

=Γ ⊢ min e over {x : d}q−1
k , {x : d}nk=q+1 st {e}si , {ê1 ��+ ēj}tj

whereēj is equal toê2 where all occurrences ofxq have been replaced by ˆej. We require

thatΓ; {x : d}nk ⊢ ê2 :
{

〈c, p,ր, o〉tui j , y
}

andxq may not occur ine, ei, ê1, andêj.

We prove that the transformation produces an equivalent formulation by noting that

�

Γ ⊢ min e over {x : d}nk st {e}si , ê1 ��+ ê2, {xq ��+ êj}tj
�

=



































































































min
y∈A∩B

f (y)

where A =
n
∏

k=1
Dk

B =
s
⋂

i=1
{y : gi(y) R hi(y)}∩

{y : g(y) ��+ h(y)}∩
t
⋂

j=1
{y : yq ��+ vj(y)}

=















































































min
x∈Â∩B̂

f (πy(x))

where Â =

(

q−1
∏

k=1
Dk

)

×
(

n
∏

k=q+1
Dk

)

B̂ =
s
⋂

i=1
{x : gi(πy(x)) R hi(πy(x))}∩

t
⋂

j=1
{x : g(πy(x)) ��+ h(π j(x))}

=
�

Γ ⊢ min e over {x : d}q−1
k , {x : d}nk=q+1 st {e}si , {ê1 ��+ ēj}tj

�

=
�

T
(

Γ ⊢ min e over {x : d}nk st {e}si , ê1 ��+ ê2, {xq ��+ êj}tj
)�

139

as long as the following conditions are met. First, the only function that may depend on

yq must beh. We satisfy this condition since we stipulate thatxk must not occur ine, ei,

ê1, andêj. Second, we require that the functionh be monotonically increasing. We also

satisfy this condition since our semantics are sound and we require thatΓ; {x : d}nk ⊢ ê2 :

{

〈c, p,ր, o〉tui j , y
}

. Therefore, our transformation is well defined.

As with expansion, we have three other cases that we must define. First, we state that

T
(

Γ ⊢ min e over {x : d}nk st {e}si , ê1 ��+ ê2, {êj ��+ xq]}tj
)

=Γ ⊢ min e over {x : d}q−1
k , {x : d}nk=q+1 st {e}si , {ê1 ��+ ēj}tj

whenΓ; {x : d}nk ⊢ ê2 :
{

〈c, p,ց, o〉tui j , y
}

and we meet the other formerly defined conditions.

This is equivalent to the first transformation, but the function ê2 is decreasing. Second, we

define

T
(

Γ ⊢ min e over {x : d}nk st {e}si , ê2 ��+ ê1, {êj ��+ xq}tj
)

=Γ ⊢ min e over {x : d}q−1
k , {x : d}nk=q+1 st {e}si , {ēj ��+ ê1}tj

whenΓ; {x : d}nk ⊢ ê2 :
{

〈c, p,ր, o〉tui j , y
}

and we meet the other formerly defined conditions.

This is also equivalent to the first transformation, but we exchange the left and right hand

140

sides. Finally, we define that

T
(

Γ ⊢ min e over {x : d}nk st {e}si , ê2 ��+ ê1, {xq ��+ êj}tj
)

=Γ ⊢ min e over {x : d}q−1
k , {x : d}nk=q+1 st {e}si , {ēj ��+ ê1}tj

whenΓ; {x : d}nk ⊢ ê2 :
{

〈c, p,ց, o〉tui j , y
}

and we meet the other formerly defined conditions.

This is equivalent to the third transformation, but the function is decreasing. The proof that

each of these transformations defines an equivalent problemfollows similarly to the proof

above.

6.5 Contracting a Single Auxiliary Variable and a Single Equality

We must consider one final contraction scenario. Ruminate over the problem

min
(x,y,z)∈�3

z

st z≥ f (x)

x = g(y)

We can transform this problem into

min
(y,z)∈�2

z

st z≥ f (g(y))

141

In fact, once we isolate a decision variable on one side of an equality, we can always

eliminate that variable from the problem.

We summarize this process with the following rules. Consider a problem of the form

min
y∈A∩B

f (y)

where A =
n
∏

k=1
Dk

B = {y : gi(y) R hi(y)}si∩

{y : yq = v(y)}

where we defineq, R, andDk as above. This problem has the same optimal value as

min
x∈Â∩B̂

f (πy(x))

where Â =

(

q−1
∏

k=1
Dk

)

×
(

n
∏

k=q+1
Dk

)

B = {y : gi(πy(x)) R hi(πy(x))}si

We require thatv(y) = v(z) for all y, z ∈ A such thatyk = zk for all k saveq. In other words,

v may not depend onyq.

We must prove this reformulation produces an equivalent problem. Sincev does not

depend onyq, the constraintyq = v(y) defines the value ofyq in terms of the other decision

variables. Thus, we may replace the dependency onyq by v(y). We accomplish this through

the projectionπy.

142

We define this transformation formally with the following

T
(

Γ ⊢ min e over {x : d}nk st {e}si , xq = ê
)

=Γ ⊢ min e over {x : d}q−1
k , {x : d}nk=q+1 st {ē}si

where we define ¯ei asei where we replace all occurrences ofxq by ê. We require thatxq

does not occur in ˆe.

We prove this transformation produces an equivalent solution by observing that

�

Γ ⊢ min e over {x : d}nk st {e}si , xq = ê
�

=











































































min
y∈A∩B

f (y)

where A =
n
∏

k=1
Dk

B = {y : gi(y) R hi(y)}si∩

{y : yq = v(y)}

=























































min
x∈Â∩B̂

f (πy(x))

where Â =

(

q−1
∏

k=1
Dk

)

×
(

n
∏

k=q+1
Dk

)

B = {y : gi(πy(x)) R hi(πy(x))}si

=
�

Γ ⊢ min e over {x : d}q−1
k , {x : d}nk=q+1 st {ē}si

�

=
�

T
(

Γ ⊢ min e over {x : d}nk st {e}si , xq = ê
)�

as long asv does not depend onyq. However, we satisfy this requirement since we stipulate

143

thatyq may not occur in ˆe. Thus, both problems produce the same optimal value.

We must define one additional, related transformation. We state that

T
(

Γ ⊢ min e over {x : d}nk st {e}si , ê= xq

)

=Γ ⊢ min e over {x : d}q−1
k , {x : d}nk=q+1 st {ē}si

This nearly identical transformation simply reverses the equality containingxq. The cor-

rectness of this transformation follows in a manner similarto above.

6.6 Binary Maximum

We can expand an inequality containing the binary maximum function into two inequal-

ities. The constrainty ≥ max(f (x), g(x)) tells us thaty must be bound below by bothf and

g. Thus, we can add each of these provisions as a separate constraint.

We define this transformation as

T (Γ;Σ ⊢ e1 ��+ max(e2, e3) : ^) = Γ;Σ ⊢ e1 ��+ e2 : ^,

Γ;Σ ⊢ e1 ��+ e3 : ^

144

We prove the equivalence of both formulations by noting that

�

Γ;Σ ⊢ e1 ��+ max(e2, e3) : ^)
�

={x : f (x) ��+ max(g(x), h(x))}

={x : f (x) ��+ g(x), f (x) ��+ h(x)}

={x : f (x) ��+ g(x)} ∩ {x : f (x) ��+ h(x)}

=
�

Γ;Σ ⊢ e1 ��+ e2 : ^, Γ;Σ ⊢ e1 ��+ e3 : ^
�

=
�T (Γ;Σ ⊢ e1 ��+ max(e2, e3) : ^)

�

6.7 Binary Minimum

We transform inequalities containing the binary minimum function analogously to in-

equalities containing the binary maximum. We characterizethis transformation as

T (Γ;Σ ⊢ min(e1, e2) ��+ e3 : ^) = Γ;Σ ⊢ e1 ��+ e3 : ^,

Γ;Σ ⊢ e2 ��+ e3 : ^

145

We prove this produces an equivalent feasible region by noticing that

�

Γ;Σ ⊢ min(e1, e2) ��+ e3 : ^)
�

={x : min(f (x), g(x)) ��+ h(x)}

={x : f (x) ��+ h(x), g(x) ��+ h(x)}

={x : f (x) ��+ h(x)} ∩ {x : g(x) ��+ h(x)}

=
�

Γ;Σ ⊢ e1 ��+ e3 : ^, Γ;Σ ⊢ e2 ��+ e3 : ^
�

=
�T (Γ;Σ ⊢ min(e1, e2) ��+ e3 : ^)

�

6.8 Elementwise Maximum

We can transform an inequality containing the max function into several inequalities.

In a manner similar to the binary maximum, the constrainty ≥ max(X) mandates thaty be

greater than every element ofX. We add each of these requirements separately.

We characterize this transformation as

T (

Γ;Σ ⊢ e1 ��+ max(e2) : ^
)

= {Γ;Σ ⊢ e1 ��+ e2i j : ^}mn
i j

whereΓ;Σ ⊢ e2 :
{

〈c, p,m, o〉mn
i j , y

}

ande2i j denotes the subindexing function··· applied to

e2 with argumentsi and j. We prove this transformation produces an equivalent feasible

146

region by noticing that

�

Γ;Σ ⊢ e1 ��+ max(e2) : ^
�

={x : f (x) ≥ max(g(x))}

={x : f (x) ≥ gi j (x) for all i, j}

=
⋂

i j

{x : f (x) ≥ gi j (x)}

=
⋂

i j

�

Γ;Σ ⊢ e1 ��+ e2i j : ^
�

=
�

{Γ;Σ ⊢ e1 ��+ e2i j : ^}mn
i j

�

=
�T (

Γ;Σ ⊢ e1 ��+ max(e2) : ^
)�

6.9 Elementwise Minimum

We transform an inequality containing the min function in a similar manner as the max

function. We define that

T (

Γ;Σ ⊢ min(e1) ��+ e2 : ^
)

= {Γ;Σ ⊢ e1i j ��+ e2 : ^}mn
i j

147

whereΓ;Σ ⊢ e2 :
{

〈c, p,m, o〉mn
i j , y

}

. We prove this transformation behaves correctly by

recognizing that

�

Γ;Σ ⊢ min(e1) ��+ e2 : ^
�

={x : min(f (x)) ≥ g(x)}

={x : fi j (x) ≥ g(x) for all i, j}

=
⋂

i j

{x : fi j (x) ≥ g(x)}

=
⋂

i j

�

Γ;Σ ⊢ e1i j ��+ e2 : ^
�

=
�

{Γ;Σ ⊢ e1i j ��+ e2 : ^}mn
i j

�

=
�T (

Γ;Σ ⊢ min(e1) ��+ e2 : ^
)�

6.10 Summation

Summations can be replaced by a series of addition and indexing operations. Some-

times this transformation is necessary to expose the individual elements of a matrix to

further transformations.

Formally, we define that

T (Γ;Σ ⊢ sum(e) : 〈c, p,m, o〉) = Γ;Σ ⊢ e11 + · · · + em1 + e12+ · · · + emn : 〈c, p,m, o〉

whereΓ;Σ ⊢ e : {〈c, p,m, o〉mn
i j , y}. Notice, we transform a function rather than a constraint

148

with this transformation. We prove this produces an equivalent function by observing that

�

Γ;Σ ⊢ sum(e) : 〈c, p,m, o〉� (x)

=sum(f (x))

=

m
∑

i=1

n
∑

j=1

fi j (x)

= f11(x) + · · · + fm1(x) + f12(x) + · · · + fmn(x)

=
�

Γ;Σ ⊢ e11+ · · · + em1 + e12 + · · · + emn : 〈c, p,m, o〉� (x)

=
�T (Γ;Σ ⊢ sum(e) : 〈c, p,m, o〉)� (x)

6.11 Infinity-Norm

Although some solvers can directly handle an inequality containing the infinity-norm,

most solvers require that the constraint be reformulated into a system of linear inequalities.

Our transformation system accomplishes this reformulation in two steps. First, we trans-

form the constraint into a system of intermediate constraints that contain the absolute value

function. Then, we may apply other transformations that linearize the result.

We define this transformation with the following rule

T (

Γ;Σ ⊢ e0 ��+ ‖e‖∞ : ^
)

=
{

Γ;Σ ⊢ e0 ��+ |ei1| + · · · + |ein|
}m
i

149

We see this transformation produces the same feasible region by noting that

�

Γ;Σ ⊢ e0 ��+ ‖e‖∞ : ^
�

= {x : f (x) ≥ ‖g(x)‖∞}

=















x : f (x) ≥ max
1≤i≤m

n
∑

j=1

| fi j (x)|














=

m
⋂

i=1















x : f (x) ≥
n

∑

j=1

| fi j (x)|














=

m
⋂

i=1

{x : f (x) ≥ | fi1(x)| + · · · + | fin(x)|}

=
�

{

Γ;Σ ⊢ e0 ��+ |ei1| + · · · + |ein|
}m
i

�

=
�T (

Γ;Σ ⊢ e0 ��+ ‖e‖∞ : ^
)�

6.12 One-Norm

Recall that for anyx ∈ �m×n, ‖x‖1 = ‖xT‖∞. Thus, we can transform any use of the one-

norm function into the infinity-norm. This allows us to utilize our above transformation.

We stipulate that

T (Γ;Σ ⊢ ‖e‖1 : 〈c, p,m, o〉) = Γ;Σ ⊢ ‖eT‖∞ : 〈c, p,m, o〉

150

We see that this produces an equivalent function since

�

Γ;Σ ⊢ ‖e‖1 : 〈c, p,m, o〉� (x) =‖ f (x)‖1

=‖ f T(x)‖∞

=
�

Γ;Σ ⊢ ‖eT‖∞ : 〈c, p,m, o〉
�

(x)

=
�T (Γ;Σ ⊢ ‖e‖1 : 〈c, p,m, o〉)� (x)

6.13 Two-Norm

Transforming a constraint containing the two-norm createsa number of difficulties.

Unlike the one and infinity norms, we want to apply a different transformation when the

argument is a vector rather than a matrix. In short, when the argument is a vector, we

can transform the constraint into a second order cone constraint. When the argument is

a matrix, we are forced to generate a semi-definite constraint. We consider these cases

separately.

We define the transformation of a column vector as

T (Γ;Σ ⊢ e1 ��+ ‖e2‖2 : ^) = Γ;Σ ⊢































e1

e2































�Q 0

whenΓ;Σ ⊢ e2 : {〈c, p,m, o〉m1
i j , y}. We prove this transformation is well-formed by observ-

151

ing that

�

Γ;Σ ⊢ e1 ��+ ‖e2‖2 : ^
�

={x : f (x) ��+ ‖g(x)‖2}

=































x :































f (x)

g(x)































�Q 0































=

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Γ;Σ ⊢































e1

e2































�Q 0

�

�

�

�

�

�

�

�

�

�

�

�

�

�

=
�T (Γ;Σ ⊢ e1 ��+ ‖e2‖2 : ^)

�

In a similar manner, we define the transformation of row vector as

T (Γ;Σ ⊢ e1 ��+ ‖e2‖2 : ^) = Γ;Σ ⊢ [e1 e2] �Q 0

whenΓ;Σ ⊢ e2 : {〈c, p,m, o〉1n
i j , y}. The proof that this transformation produces an equiva-

lent feasible region is nearly identical to the proof above.

When the argument to the two-norm is a matrix, the result can be transformed into a

semidefinite constraint. Before we begin, we need a related technical result. LetX ∈ �m×n.

We must show that the positive eigenvalues of the matrix

X̄ =































0 XT

X 0































are the singular values ofX. Let v = [vT
1 , v

T
2]T be an eigenvector of̄X with associated

152

eigenvalueλ. We see that































0 XT

X 0





























































v1

v2































= λ































v1

v2































⇐⇒































XTv2

Xv1































= λ































v1

v2































⇐⇒































XTv2=λv1

Xv1=λv2

=⇒XTXv1 = λ
2v1

Thus, the absolute value of each eigenvalue ofX̄ is a singular value ofX. This seems a bit

puzzling since there are twice as many eigenvalues ofX̄ as there are singular values ofX.

However, we notice that































0 XT

X 0





























































v1

−v2































=































−XTv2

Xv1































=































−λv1

λv2































= −λ































v1

−v2































Thus, wheneverv = [vT
1 , v

T
2]T is an eigenvector with associated eigenvalueλ, so is [vT

1 , −vT
2]T

with associated eigenvalue−λ. Therefore, we can find the singular values ofX by finding

the nonnegative eigenvalues ofX̄. This allows us to view a constraint on the two-norm of

153

X as a constraint on the largest eigenvalue ofX̄. This gives us the following transformation

T (Γ;Σ ⊢ e1 ��+ ‖e2‖2 : ^) = Γ;Σ ⊢ e1 ��+ λmax































0 eT
2

0































: ^

We see this transformation produces an equivalent feasibleregion by noting that

�

Γ;Σ ⊢ e1 ��+ ‖e2‖2 : ^
�

={x : f (x) ��+ ‖g(x)‖2}

={x : f (x) ��+ σmaxg(x)

={x : f (x) ��+ λmax































0 gT(x)

g(x) 0































=

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Γ;Σ ⊢ e1 ��+ λmax































0 eT
2

0































: ^

�

�

�

�

�

�

�

�

�

�

�

�

�

�

=
�T (

Γ;Σ ⊢ e1 ��+ ‖e2‖2 : ^
)�

6.14 Maximum Eigenvalue

A constraint on the maximum eigenvalue of a matrix may be reformulated into a semidef-

inite constraint. Lett be a scalar variable andA a matrix. Then, the constrainttI �S+ A

requires thatt be larger than the maximum eigenvalue ofA. Recall, adding a multiple of

the identity to a matrix simply shifts the eigenvalues of that matrix. Thus, the matrixtI − A

possesses a set of eigenvalues{t − λmax, . . . , t − λmin}. Since the constrainttI − A �S+ 0

requires that all eigenvalues to be nonnegative, it equivalently states thatt−λi ≥ 0 or t ≥ λi

154

for all i. Of course, this means thatt must be at least as large as the largest eigenvalue.

We formulate this transformation as

T (

Γ;Σ ⊢ e1 ��+ λmax(e2) : ^
)

= Γ;Σ ⊢ e1 ∗ I �S+ e2 : ^

where I is the identity matrix with size the same ase2. We see that this transformation

behaves correctly by noticing that

�

Γ;Σ ⊢ e1 ��+ λmax(e2) : ^
�

={x : f (x) ≥ λmax(g(x))}

={x : f (x)I �S+ g(x)}

=
�

Γ;Σ ⊢ e1 ∗ I �S+ e2 : ^
�

=
�T (

Γ;Σ ⊢ e1 ��+ λmax(e2) : ^
)�

6.15 Minimum Eigenvalue

We transform a constraint containing the minimum eigenvalue in a similar manner as

the maximum eigenvalue. For a scalar variablet and a matrixA, the constraintA �S+ tI

requires thatt be at most the minimum eigenvalue ofA. The matrixA − tI has eigenval-

ues{λmax− t, . . . , λmin − t}. Since the constraintA − tI �S+ 0 requires that each of these

eigenvalues be positive, it equivalently requires thatt be no larger than the minimum.

155

We define this transformation as

T (

Γ;Σ ⊢ λmin(e1) ��+ e2 : ^
)

= Γ;Σ ⊢ e1 �S+ e2 ∗ I : ^

whereI is the identity matrix with size compatible toe1. We see this transformation pro-

duces an equivalent feasible region by observing that

�

Γ;Σ ⊢ λmin(e1) ��+ e2 : ^
�

={x : λmin(f (x)) ≥ g(x)}

={x : f (x) ��+ g(x) ∗ I }

=
�

Γ;Σ ⊢ e1 �S+ e2 ∗ I : ^
�

=
�T (

Γ;Σ ⊢ λmin(e1) ��+ e2 : ^
)�

156

6.16 Convex Quadratics

A constraint containing a convex quadratic on each side of aninequality may be trans-

formed into a second-order cone constraint. Notice the following



















































x :



















































1− cT x− γ

2Ux

1+ cT x+ γ



















































�Q 0



















































=
{

x : 1− cT x− γ ≥
√

(2Ux)T(2Ux) + (1+ cT x+ γ)2
}

=
{

x : (1− cT x− γ)2 ≥ 4xTUTUx+ (1+ cT x+ γ)2, 1− cT x− γ ≥ 0
}

=
{

x : 0 ≥ 4xTUTUx+ (1+ cT x+ γ)2 − (1− cT x− γ)2, 1− cT x− γ ≥ 0
}

=
{

x : 0 ≥ 4xTUTUx+ 4cT x+ 4γ, 1− cT x− γ ≥ 0
}

=
{

x : 0 ≥ xTUTUx+ cT x+ γ, 1− cT x− γ ≥ 0
}

=
{

x : 0 ≥ xTUTUx+ cT x+ γ
}

since (a+b+c)2− (a−b−c)2 = 4ab+4acand by observing that 1−cT x−γ ≥ −xTUTUx−

cT x− γ ≥ 0 sinceUTU � 0. Thus, when we have a constraint of the form

xTAx+ aT x+ α ≥ xTBx+ bT x+ β

andUTU = C = B−A � 0, c = b− a, andγ = β−α, we can use the above transformation.

Unfortunately, our situation becomes slightly more complicated. Although we can de-

157

termine when a function is quadratic, we define this propertyin terms of all decision vari-

ables. For example, consider the function

X ∈ �2×2, y ∈ �2×1 7→ (X11 + X21)
2 + 3(y1 + y2)

2

Our type system tells us that this function is quadratic witha representation

X ∈ �2×2, y ∈ �2×1 7→































vec(X)

y































T



















































































































1 1 0 0 0 0

1 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 3 3

0 0 0 0 3 3

















































































































































vec(X)

y































where we denote the quadratic coefficient byC. Unfortunately, this representation becomes

burdensome since it depends on the variablesX12 andX22 even though the original repre-

sentation did not. In order to resolve this problem, we definea new projection operator,

πC : �m→ �n defined as

[πC(x)]k = xξ(k)

wheremdenotes the total number of rows inC andn denotes the number of nonzero rows.

Then, label the nonzero rows ofC, in order, from 1 ton. The functionξ : {1, . . . ,m} →

{1, . . . , n} represents an increasing, injective function that maps this labeling to the original

158

index inC. When we compose this projection with vectorization, we abbreviate the result

asvecC = πC ◦ vec. Using these projections, we define our quadratic as

X ∈ �2×2, y ∈ �2×1 7→































vecC(X)

vecC(y)































T









































































1 1 0 0

1 1 0 0

0 0 3 3

0 0 3 3







































































































vecC(X)

vecC(y)































Where we call the smaller quadratic coefficient thereducedquadratic coefficient. At this

point, we must factor this coefficient intoUTU. Unfortunately, since this matrix may be

only positive semidefinite, we can not take the Choleski factorization. Instead, we find the

compact singular value decomposition. the second-order coefficient intoVΣVT where

V =









































































0 −1/
√

2

0 −1/
√

2

−1/
√

2 0

−1/
√

2 0









































































Σ =































6 0

0 2































159

Thus, our factored, reduced quadratic coefficient is

U =































0 0 −
√

3 −
√

3

−1 −1 0 0































We define our factored, reduced quadratic as

X ∈ �2×2, y ∈ �2×1 7→









































































X11

X21

y1

y2









































































T































0 0 −
√

3 −
√

3

−1 −1 0 0































T 





























0 0 −
√

3 −
√

3

−1 −1 0 0







































































































X11

X21

y1

y2









































































T

With this form, we can easily reformulate our quadratic intoa second-order cone constraint.

We define this process formally with the following rule. LetΓ;Σ ⊢ e1 : 〈⊥, (α, a,A),⊥,�〉

andΓ;Σ ⊢ e2 : 〈⊥, (β, b, B),⊥,�〉. Assume thatB− A �S+ 0. Then, we define that

T (

Γ;Σ ⊢ e1 ��+ e2 : ^
)

= Γ;Σ ⊢



















































1− ĉT ∗ ê− γ

2 ∗ U ∗ ẽ

1+ ĉT ∗ ê+ γ



















































�Q 0 : ^

In addition, we define the following. Let theγ = β− α, c = b− a, andC = B− A. Next, let

ĉ = vecc(c) be a constant vector containing the nonzero elements ofc. Associated with this

vector, letê be the vertical concatenation of each variable that corresponds to a nonzero

element ofc. Similarly, letU be a constant matrix that corresponds to the factored, reduced

160

quadratic coefficient of C. Along with this matrix, letẽ be the vertical concatenation of

each variable that corresponds to a nonzero rows ofC.

We prove this transformation behaves properly with the following. Notice that

�

Γ;Σ ⊢ e1 ��+ e2 : ^
�

={x : vec(x)T Avec(x) + aTvec(x) + α ��+ vec(x)T Bvec(x) + bTvec(x) + β}

={x : 0 ≥ vec(x)TCvec(x) + cTvec(x) + γ}

={x : 0 ≥ vecC(x)TUTUvecC(x) + vecc(c)Tvecc(x) + γ}

=



















































x :



















































1− vecc(c)Tvecc(x) − γ

2UvecC(x)

1+ vecc(c)Tvecc(x) + γ



















































�Q 0



















































=



















































x :



















































1− ĉTvecc(x) − γ

2UvecC(x)

1+ ĉTvecc(x) + γ



















































�Q 0



















































=

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Γ;Σ ⊢



















































1− ĉT ∗ ê− γ

2 ∗ U ∗ ẽ

1+ ĉT ∗ ê+ γ



















































�Q 0 : ^

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

=
�T (

Γ;Σ ⊢ e1 ��+ e2 : ^
)�

161

6.17 Non-Convex Quadratics

We transform nonconvex quadratics in a much different fashion than convex quadrat-

ics. These constraints are difficult to handle since they can define a convoluted and possibly

nonconnected feasible region. For example, the constraintx2 = 1 defines an integer con-

straint where the variablex must be either 1 or−1. In order to reformulate these constraints,

we lift each quadratic into a higher-dimensional space where the quadratic becomes linear.

In other words, consider a constraint of the form

f (x) R xTAx+ aT x+ α

Notice that we can rewrite this as

f (x) R tr(xTAx) + aT x+ α

sincexTAx is scalar. Using the commutative property of trace, we see that

f (x) R tr(AxxT) + aT x+ α

At this point, we linearize the problem into

f (x) R tr(AX) + aT x+ α

162

whereX = xxT . As a consequence of this action, we add a difficult rank-1 constraint,

X = xxT . Later, we relax this constraint into a semidefinite program.

We define this transformation with the following. LetΓ;Σ ⊢ e2 : 〈⊥, (α, a,A),⊥,⊥,�〉.

Then, we specify that

T (Γ;Σ ⊢ e1 R e2 : ^) = Γ;Σ,X : Sm ⊢ e1 R tr(Â ∗ X) + âT ∗ ê+ α : ^,

Γ;Σ,X : Sm ⊢ X = x ∗ xT : ^

In addition, we make the following definitions. We defineÂ to be the reduced quadratic

coefficient of sizemandâ to be the reduced linear coefficient. In addition, ˆe represents the

vertical concatenation of each variable that corresponds to a nonzero element ofa.

Since we add an auxiliary variable, we must show that the original feasible region is a

projection of the reformulated region. Letπx : (
∏n

k=1Dk) × Sm→∏n
k=1Dk be a projection

defined by

[πx(y)]k = yk

163

for k = 1, . . . , n. Then, we see that

~Γ;Σ ⊢ e1 R e2 : ^� ={x : f (x) R vec(x)TAvec(x) + aTvec(x) + α}

=πx{x,X : f (πx(x,X)) R vec(x)T Avec(x) + aTvec(x) + α}

=πx{x,X : f (πx(x,X)) R vecA(x)T ÂvecA(x) + âTveca(x) + α}

=πx{x,X : f (πx(x,X)) R tr(ÂX) + âTveca(x) + α,X = vecA(x)vecA(x)T}

=πx































{x,X : f (πx(x,X)) R tr(ÂX) + âTveca(x) + α}∩

{x,X : X = vecA(x)vecA(x)T}































=πx

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Γ;Σ,X : Sm ⊢ e1 R tr(Â ∗ X) + âT ∗ ê+ α : ^,

Γ;Σ,X : Sm ⊢ X = x ∗ xT : ^

�

�

�

�

�

�

�

�

�

�

�

�

�

�

=πx ~T (Γ;Σ ⊢ e1 R e2 : ^)�

In a similar manner, we can define one additional transformation by reversing the left and

right hand sides. Since equality is symmetric, this must generate an equivalent problem.

As a final note, this transformation generally makes a problem more difficult to solve.

However, we can relax the rank-1 constraint into a much easier form using the next trans-

formation.

6.18 Symmetric Rank-1 Constraints

Symmetric rank-1 constraints represent an extremely difficult class of constraints to

optimize over. Fortunately, we can relax them into a semidefinite constraint. The strength

164

of this relaxation depends on many factors. In fact, this relaxation could be extremely

weak. Nevertheless, it has proved useful in many cases.

Our strategy consists of relaxing a constraint of the formX = xxT , whereX = XT , into

X �S+ xxT . The Schur Complement theorem tells us that

A ≻S++ 0 andC �S+ BA−1BT ⇐⇒































A BT

B C































�S+ 0

whereA ≻S+ 0 denotes thatA must be positive definite. Therefore, we can relax our original

constraint into






























1 xT

x X































�S+ 0

We codify this process with the following rule

T
(

Γ;Σ ⊢ e1 = e2 ∗ eT
2 : ^

)

= Γ;Σ ⊢































I eT
2

e1































�S+ 0 : ^

whenΓ;Σ ⊢ e1 :
{

〈c, p,m, o〉mn
i j , ‡

}

and I denotes the identity matrix. Although this pro-

cess does not generate an equivalent feasible region, we seethat it behaves correctly by

165

observing that

�

Γ;Σ ⊢ e1 = e2 ∗ eT
2 : ^

�

=
{

x : f (x) = g(x)g(x)T
}

⊆
{

x : f (x) �S+ g(x)g(x)T
}

=































x :































I g(x)T

g(x) f (x)































�S+ 0































=

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Γ;Σ ⊢































I eT
2

e1































�S+ 0 : ^

�

�

�

�

�

�

�

�

�

�

�

�

�

�

=
�

T
(

Γ;Σ ⊢ e1 = e2 ∗ eT
2 : ^

)�

As a final note, since equal is symmetric, we can apply this same transformation by revers-

ing the left and right hand sides.

6.19 ±1 Integer Variables

We find plus-minus one integer domains in a number of graph theoretic problems. For

example, the max-cut problem uses this domain to divide the vertices of a graph into two

sets. Instead of handling these variables directly, we can transform them into a non-convex

quadratic equality constraint,x2 = 1. Once we obtain this form, we can relax it into a

semidefinite program.

166

We define this transformation with the following rule

T
(

Γ ⊢ min e over {x : d}q−1
k , xq : {−1, 1}mq×nq, {x : d}nk=q+1 st {e}si

)

=Γ ⊢ min e over {x : d}q−1
k , xq : �mq×nq, {x : d}nk=q+1 st {e}si , {x2

qi j = 1}mqnq

i j

We see that this transformation does not change the solutionby observing that

�

Γ ⊢ min e over {x : d}q−1
k , xq : {−1, 1}mq×nq, {x : d}nk=q+1 st {e}si

�

=























































min
x∈A∩B

f (x)

where A =

{

q−1
∏

k=1
Dk

}

× {−1, 1}mq×nq ×
{

n
∏

k=q+1
Dk

}

B = {x ∈ Si}si

=











































































min
x∈A∩B

f (x)

where A =

{

q−1
∏

k=1
Dk

}

×�mq×nq ×
{

n
∏

k=q+1
Dk

}

B = {x ∈ Si}si∩
{

x2
qi j = 1

}mqnq

i j

=
�

Γ ⊢ min e over {x : d}q−1
k , xq : �mq×nq, {x : d}nk=q+1 st {e}si , {x2

qi j = 1}mqnq

i j

�

=
�

T
(

Γ ⊢ min e over {x : d}q−1
k , xq : {−1, 1}mq×nq, {x : d}nk=q+1 st {e}si

)�

whereSi denotes some arbitrary feasible region.

167

6.20 Quartics

Earlier, we observed the use of quartics in the chained singular function. In that exam-

ple, we transformed each quartic into a quadratic. We revisit that trick with the following

example. Consider the constraint,

y ≥ x4

We can rewrite the termx4 as (x2)2. Then, we notice two facts. First,x2 ≥ 0 for all x.

Second, the functionx 7→ x2 is increasing for all positive arguments. Therefore, we can

introduce a single auxiliary variable and rewrite this constraint as the pair

y ≥ z2

z≥ x2

In order to formally show this equivalence, let us define two sets

A =















x ∈
n

∏

k=1

Dk : f (x) ≥ (g(x))4















B =















x ∈
n

∏

k=1

Dk, y ∈ � : f (πx(x, y)) ≥ y2, y ≥ (g(πx(x, y)))2















whereπx :
∏n

k=1Dk × � →
∏n

k=1Dk and [πx(z)]k = zk for k = 1, . . . , n. We must show

that A = πxB. In the forward direction, letx ∈ A. We must find ay such that (x, y) ∈ B.

Let y = (g(πx(x, y)))2. Certainly, we see thaty = (g(πx(x, y)))2 ≥ (g(πx(x, y)))2. In addition,

168

sincex ∈ A, we see that

f (π(x, y)) = f (x) ≥ (g(x))4 = (g(π(x, y)))4 = y2 ≥ y2

Therefore, (x, y) ∈ B andA ⊆ πxB. In the reverse direction, take (x, y) ∈ B. We must show

thatx ∈ A. Sincex, y 7→ y2 is increasing for positivey and (g(πx(x, y)))2 ≥ 0, we see that

f (x) = f (πx(x, y)) ≥ y2 ≥ ((g(πx(x, y)))2)2 = (g(x))4

Thus,x ∈ A andπxB ⊆ A. Hence, we know thatA = πxB.

We define this transformation as

T
(

Γ;Σ ⊢ e1 ��+ e4
2 : ^

)

= Γ;Σ, y : �1×1 ⊢ e1 ≥ y2 : ^,

Γ;Σ, y : �1×1 ⊢ y ≥ e2
2 : ^

We see this transformation behaves properly by noticing that

�

Γ;Σ ⊢ e1 ��+ e4
2 : ^
�

=
{

x ∈∏n
k=1Dk : f (x) ≥ (g(x))4

}

= πx

{

x ∈∏n
k=1Dk, y ∈ � : f (πx(x, y)) ≥ y2, y ≥ (g(πx(x, y)))2

}

= πx

{

x ∈ ∏n
k=1Dk, y ∈ � : f (πx(x, y)) ≥ y2

}

∩
{

x ∈ ∏n
k=1Dk, y ∈ � : y ≥ (g(πx(x, y)))2

}

= πx

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Γ;Σ, y : �1×1 ⊢ e1 ≥ y2 : ^,

Γ;Σ, y : �1×1 ⊢ y ≥ e2
2 : ^

�

�

�

�

�

�

�

�

�

�

�

�

�

�

= πx

�

T
(

Γ;Σ ⊢ e1 ��+ e4
2 : ^

)�

169

6.21 Linearizing the Objective Function

The vast majority of the transformations that we have definedoperate on a constraint

rather than on the objective function. Although many of these transformations will work

in both situations, defining each case becomes cumbersome. Instead, we note that we can

convert the objective function into a constraint by adding asingle variable. In other words,

we can convert the problem

min
x∈A

f (x)

into

min
x∈A,y∈�

y st y ≥ f (x)

We must show these problems produce an equivalent solution.Let x∗ be an optimal solution

to the first problem. Certainly, wheny = f (x∗), the point (f (x∗), y) is feasible in the second

problem and the objective value remains the same. Therefore, the optimal value of the first

problem is greater than or equal to the second. In the reversedirection, let (x∗, y∗) be an

optimal solution to the second problem. We immediately see thatx∗ remains feasible in the

first problem. Sincey∗ ≥ f (x∗), the optimal value of the second problem is greater than or

equal to the first. Thus, both problems have the same optimal value.

We define this transformation as

T (

Γ ⊢ min e over {x : d}nk st {e}si
)

=Γ ⊢ min xn+1 over {x : d}nk, xn+1 : �1×1 st {e}si , xn+1 ��+ e

170

We see that this produces an equivalent problem since

�

Γ ⊢ min e over {x : d}nk st {e}si
�

=



















































min
x∈A∩B

f (x)

where A =
n
∏

k=1
Dk

B = {x ∈ Si}si

=























































min
y∈A∩B

yk+1

where A =

{

n
∏

k=1
Dk

}

×�

B = {y ∈ Si}si ∩ {y : yk+1 ≥ f (πx(y))}

=
�

Γ ⊢ min xn+1 over {x : d}nk, xn+1 : �1×1 st {e}si , xn+1 ��+ e
�

=
�T (

Γ ⊢ min e over {x : d}nk st {e}si
)�

whereπx :

(

n
∏

k=1
Dk

)

×�→
n
∏

k=1
Dk is defined asπx(y)k = yk for k = 1, . . . , n.

171

Chapter 7

Case Studies

In the following section, we revisit the chained singular function and the max-cut prob-

lem. We show that we can correctly model and transform these problems into more de-

sirable formulations. In addition, we assess the type-checking capability our design by

demonstrating that we can prove convexity, polynomality, and monotonicity in a wide va-

riety of situations.

We have implemented the language as a series of quotations within OCaml using Camlp5.

Essentially, a quotation allows us to generate a piece of theabstract syntax tree using our

custom defined grammar. Once we have the abstract syntax tree, we can type-check and

manipulate the expression. Using quotations has two benefits. First, it allows us to quickly

generate and manipulate problems. Second, we avoid adding file support, bindings, and

other features within our language. Simply, we leverage OCaml for these features.

172

7.1 Max-Cut

Recall, we formulate the max-cut problem as

max
x∈{−1,1}n

1
4

∑

i j

(1− xi xj)wi j

Let us define a small version of this problem in our language with the following code

let mc= <:mp<

max 2.0*(1.-x*y)+1.0*(1.-y*z)+3.0*(1.-x*z)

over x in PlusMinusOne[1,1],

y in PlusMinusOne[1,1],

z in PlusMinusOne[1,1] >>;;

Before we can transform the objective, we must linearize theproblem and move the objec-

tive function into the constraints.

let mc=linearize mc;;

This generates the following problem

max _0

over x in PlusMinusOne[1,1], y in PlusMinusOne[1,1],

z in PlusMinusOne[1,1], _0 in Real[1,1]

st [2.] * ([1.] - x * y) + [1.] * ([1.] - y * z)

+ [3.] * ([1.] - x * z) >= _0

173

The variable_0 denotes a new auxiliary variable. All auxiliary variables start with an

underscore followed by a number. We use this convention since it insures that these names

do not conflict with the user-defined variables. This programcorresponds directly to the

problem

max
(x,y,z)∈{−1,1}3,t0∈�

t0

st 2(1− xy) + (1− yz) + 3(1− xz) ≥ t0

Next, we eliminate each of the plus-minus one integer constraints.

let mc=napply_mp pm1 mc;;

The functionnapply_mp repeatedly applies a transformation until normalization.In other

words, it applies the transformation until the transformation has no affect. This generates

the problem

max _0

over x in Real[1,1], y in Real[1,1], z in Real[1,1],

_0 in Real[1,1]

st [2.] * ([1.] - x * y) + [1.] * ([1.] - y * z)

+ [3.] * ([1.] - x * z) >= _0

(x[1 , 1])ˆ([2.]) = [1.]

(y[1 , 1])ˆ([2.]) = [1.]

(z[1 , 1])ˆ([2.]) = [1.]

174

This corresponds directly to the mathematical program

max
(x,y,z,t0)∈�4

t0

st 2(1− xy) + (1− yz) + 3(1− xz) ≥ t1

x2 = 1

y2 = 1

z2 = 1

Next, we lift each nonconvex quadratic into a linear constraint with the command

let mc=apply_mp (nonconvex_quad ‘Left) mc;;

The functionapply_mp applies a transformation to each constraint. This producesthe

problem

max _0

over x in Real[1,1], y in Real[1,1], z in Real[1,1],

_0 in Real[1,1], _1 in Symmetric[3],

_2 in Symmetric[1], _3 in Symmetric[1],

_4 in Symmetric[1]

st trace([0. -1. -1.5; -1. 0. -0.5; -1.5 -0.5 0.] * _1) +

[6.] >= _0

_1 = {x[1 , 1]; {y[1 , 1]; z[1 , 1]}} *

({x[1 , 1]; {y[1 , 1]; z[1 , 1]}})’

trace([1.] * _2) = [1.]

175

_2 = x[1 , 1] * (x[1 , 1])’

trace([1.] * _3) = [1.]

_3 = y[1 , 1] * (y[1 , 1])’

trace([1.] * _4) = [1.]

_4 = z[1 , 1] * (z[1 , 1])’

This program corresponds directly to the problem

max
(x,y,z,t0,t2,t3,t4)∈�7,t1∈S3

t0

st tr





































































































0 −1 −1.5

−1 0 −.5

−1.5 −.5 0



















































t1



















































+ 6 ≥ 0

t1 =

[

x y z

]T [

x y z

]

tr(t2) = 1

t2 = xxT

tr(t3) = 1

t3 = yyT

tr(t4) = 1

t4 = zzT

At this point we notice that we have been wasteful. We have introduced three more vari-

ables than necessary:t2, t3, andt4. Each of these variables corresponds tot111, t122, andt133

176

respectively. In other words, it is possible to reduce the mathematical program into

max
(x,y,z,t0)∈�7,t1∈S3

t0

st tr





































































































0 −1 −1.5

−1 0 −.5

−1.5 −.5 0



















































t1



















































+ 6 ≥ 0

t1 =

[

x y z

]T [

x y z

]

t111 = 1

t122 = 1

t133 = 1

This problem occurs since we apply the lifting procedure to each constraint separately.

Since we do not coordinate each transformation, redundant variables may arise. Unfortu-

nately, eliminating this problem proves difficult. It requires us to define a global nonconvex

quadratic transformation that considers the entire problem. As a result, we may be forced

to live with this redundancy. Despite this difficulty, we complete our reformulation by

relaxing each rank-1 constraint into a semidefinite constraint with the command

let mc=apply_mp (lowrank ‘Right) mc;;

This generates the following program

max _0

over x in Real[1,1], y in Real[1,1], z in Real[1,1],

_0 in Real[1,1], _1 in Symmetric[3],

177

_2 in Symmetric[1], _3 in Symmetric[1],

_4 in Symmetric[1]

st

trace([0. -1. -1.5; -1. 0. -0.5; -1.5 -0.5 0.] * _1) +

[6.] >= _0

{[1.] ({x[1 , 1]; {y[1 , 1]; z[1 , 1]}})’; _1}

>=S [0. 0. 0. 0.; 0. 0. 0. 0.; 0. 0. 0. 0.;

0. 0. 0. 0.]

trace([1.] * _2) = [1.]

{[1.] (x[1 , 1])’; _2} >=S [0. 0.; 0. 0.]

trace([1.] * _3) = [1.]

{[1.] (y[1 , 1])’; _3} >=S [0. 0.; 0. 0.]

trace([1.] * _4) = [1.]

{[1.] (z[1 , 1])’; _4} >=S [0. 0.; 0. 0.]

This corresponds to the problem

max
(x,y,z,t0,t2,t3,t4)∈�7,t1∈S3

t0

st tr





































































































0 −1 −1.5

−1 0 −.5

−1.5 −.5 0



















































t1



















































+ 6 ≥ 0



































1

[

x y z

]

[

x y z

]T

t1



































�S+ 0

178

tr(t2) = 1






























1 x

x t2































�S+ 0

tr(t3) = 1






























1 y

y t3































�S+ 0

tr(t4) = 1






























1 z

z t4































�S+ 0

Thus, we have successfully generated a linear semidefinite program from our original for-

mulation. Although we find our relaxation to be less than optimal, we have successfully

derived one possible relaxation to a difficult problem.

7.2 Chained Singular Function

In the following discussion, we consider the simplest possible problem containing the

chained singular function

min
(y,x1,x2,x3,x4)∈�5

y

st y ≥ (x1 + 10x2)2 + 5(x3 − x4)2 + (x2 − 2x3)4 + 10(x1 − 10x4)4

We represent this problem in our language with

179

let csf= <:mp<

min y

over x1 in Real[1,1], x2 in Real[1,1], x3 in Real[1,1],

x4 in Real[1,1], y in Real[1,1]

st y >= (x1+10.*x2)ˆ2.+5.*(x3-x4)ˆ2.+

(x2-2.*x3)ˆ4.+10.*(x1-10.*x4)ˆ4. >>;;

This yields the program

min y

over x1 in Real[1,1], x2 in Real[1,1],

x3 in Real[1,1], x4 in Real[1,1],

y in Real[1,1]

st y >= ((x1 + [10.] * x2)ˆ([2.]) + [5.] * (x3 - x4)ˆ([2.]) +

(x2 - [2.] * x3)ˆ([4.]) + [10.] * (x1 - [10.] *

x4)ˆ([4.]))

We notice this problem contains two quartics embedded in theconstraint. In order to reach

them, we must expand the problem with the command

let csf=napply_mp (apply_mp (expand_ineq ‘Right)) csf;;

This yields the program

min y

over x1 in Real[1,1], x2 in Real[1,1], x3 in Real[1,1],

180

x4 in Real[1,1], y in Real[1,1], _0 in Real[1,1],

_1 in Real[1,1], _2 in Real[1,1], _3 in Real[1,1],

_4 in Real[1,1], _5 in Real[1,1], _6 in Real[1,1],

_10 in Real[1,1]

st y >= (_0 + _1)

_0 >= (_2 + _3)

_2 >= (_5 + _6)

_5 >= (x1 + [10.] * x2)ˆ([2.])

_6 >= [5.] * _10

_10 >= (x3 - x4)ˆ([2.])

_3 >= (x2 - [2.] * x3)ˆ([4.])

_1 >= [10.] * _4

_4 >= (x1 - [10.] * x4)ˆ([4.])

181

This corresponds to the problem

min
(y,xi ,ti)∈�16∈�5

y

st y ≥ t0 + t1

t0 ≥ t2 + t3

t2 ≥ t5 + t6

t5 ≥ (x1 + 10x2)2

t6 ≥ 5t10

t10 ≥ (x3 − x4)2

t3 ≥ (x2 − 2x3)4

t1 ≥ 10t4

t4 ≥ (x1 − 10x4)4

At this point, we notice that we have exposed all the quartics. As a result, we can remove

them with the command

let csf=apply_mp quartic csf;;

This produces the following program

min y

over x1 in Real[1,1], x2 in Real[1,1], x3 in Real[1,1],

x4 in Real[1,1], y in Real[1,1], _0 in Real[1,1],

_1 in Real[1,1], _2 in Real[1,1], _3 in Real[1,1],

_4 in Real[1,1], _5 in Real[1,1], _6 in Real[1,1],

182

_10 in Real[1,1], _17 in Real[1,1], _18 in Real[1,1]

st y >= (_0 + _1)

_0 >= (_2 + _3)

_2 >= (_5 + _6)

_5 >= (x1 + [10.] * x2)ˆ([2.])

_6 >= [5.] * _10

_10 >= (x3 - x4)ˆ([2.])

_3 >= (_17)ˆ([2.])

_17 >= (x2 - [2.] * x3)ˆ([2.])

_1 >= [10.] * _4

_4 >= (_18)ˆ([2.])

_18 >= (x1 - [10.] * x4)ˆ([2.])

183

This coincides the with problem

min
(y,xi ,ti)∈�18∈�5

y

st y ≥ t0 + t1

t0 ≥ t2 + t3

t2 ≥ t5 + t6

t5 ≥ (x1 + 10x2)2

t6 ≥ 5t10

t10 ≥ (x3 − x4)2

t3 ≥ t2
17

t17 ≥ (x2 − 2x3)2

t1 ≥ 10t4

t4 ≥ t2
18

t18 ≥ (x1 − 10x4)2

At this point, we must make a decision. Ultimately, we wish totransform each convex

quadratic into a second-order cone constraint. We can either employ this transformation

now, or we can contract the problem then transform. For our purposes, we try both and

compare the results. If we transform the convex quadratics now, we use the following

command

let csf=apply_mp convex_quad csf;;

This generates the program

184

min y

over x1 in Real[1,1], x2 in Real[1,1], x3 in Real[1,1],

x4 in Real[1,1], y in Real[1,1], _0 in Real[1,1],

_1 in Real[1,1], _2 in Real[1,1], _3 in Real[1,1],

_4 in Real[1,1], _5 in Real[1,1], _6 in Real[1,1],

_10 in Real[1,1], _17 in Real[1,1], _18 in Real[1,1]

st y >= (_0 + _1)

_0 >= (_2 + _3)

_2 >= (_5 + _6)

{[1.] - ([-1.])’ * _5[1 , 1]; {[2.] * [-1. -10.] *

{x1[1 , 1] ; x2[1 , 1]}; [1.] + ([-1.])’ *

_5[1 , 1]}} >=Q [0.; 0.; 0.]

_6 >= [5.] * _10

{[1.] - ([-1.])’ * _10[1 , 1]; {[2.] * [-1. 1.] *

{x3[1 , 1] ; x4[1 , 1]}; [1.] + ([-1.])’ *

_10[1 , 1]}} >=Q [0.; 0.; 0.]

{[1.] - ([-1.])’ * _3[1 , 1]; {[2.] * [1.] *

_17[1 , 1]; [1.] + ([-1.])’ * _3[1 , 1]}}

>=Q [0.; 0.; 0.]

{[1.] - ([-1.])’ * _17[1 , 1]; {[2.] * [-1. 2.] *

{x2[1 , 1] ; x3[1 , 1]}; [1.] + ([-1.])’ *

185

_17[1 , 1]}} >=Q [0.; 0.; 0.]

_1 >= [10.] * _4

{[1.] - ([-1.])’ * _4[1 , 1]; {[2.] * [1.] *

_18[1 , 1]; [1.] + ([-1.])’ * _4[1 , 1]}}

>=Q [0.; 0.; 0.]

{[1.] - ([-1.])’ * _18[1 , 1]; {[2.] * [-1. 10.] *

{x1[1 , 1] ; x4[1 , 1]}; [1.] + ([-1.])’ *

_18[1 , 1]}} >=Q [0.; 0.; 0.]

186

This program matches the problem

min
(y,xi ,ti)∈�18∈�5

y

st y ≥ t0 + t1 t0 ≥ t2 + t3

t2 ≥ t5 + t6 t6 ≥ 5t10

t1 ≥ 10t4


















































1+ t5

2(−x1 − 10x2)

1− t5



















































�Q 0



















































1+ t10

2(−x3 + x4)

1− t10



















































�Q 0



















































1+ t3

2t17

1− t3



















































�Q 0



















































1+ t17

2(−x2 + 2x3)

1− t17



















































�Q 0



















































1+ t4

2t18

1− t4



















































�Q 0



















































1+ t18

2(−x1 + 10x4)

1− t18



















































�Q 0

Thus, we have generated a nice extremely-sparse second-order cone program. Unfortu-

nately, we have added 13 new decision variables. Thus, this process has been wasteful.

Alternatively, before we employ this transformation, we can contract the system with the

command

let csf=napply_mp (contract_ineq ‘Left) csf;;

This generates the program

187

min y

over x1 in Real[1,1], x2 in Real[1,1], x3 in Real[1,1],

x4 in Real[1,1], y in Real[1,1], _4 in Real[1,1],

_5 in Real[1,1], _6 in Real[1,1], _17 in Real[1,1],

_18 in Real[1,1]

st _5 >= (x1 + [10.] * x2)ˆ([2.])

_17 >= (x2 - [2.] * x3)ˆ([2.])

_4 >= (_18)ˆ([2.])

_18 >= (x1 - [10.] * x4)ˆ([2.])

y >= (_5 + _6 + (_17)ˆ([2.]) + [10.] * _4)

_6 >= [5.] * (x3 - x4)ˆ([2.])

This representation matches the problem

min
(y,xi ,ti)∈�10∈�5

y

st t5 ≥ (x1 + 10x2)2

t17 ≥ (x2 − 2x3)2

t4 ≥ t2
18

t18 ≥ (x1 − 10x4)2

y ≥ t5 + t6 + t2
17+ 10t4

t6 ≥ 5(x3 − x4)2

188

Notice that we have eliminated eight decision variables. However, also note that we could

potentially eliminatet4, t5, andt6 within the constraint

y ≥ t5 + t6 + t2
17+ 10t4

but did not. This illustrates a weakness within our typing and contraction rules. The func-

tion y, x, t 7→ t5 + t6 + t2
17 + 10t4 is not monotonic inall variables since it contains the term

t2
17. However, it is monotonic int4, t5, andt6. Thus, if we want to correctly eliminate these

variables, we must make an addition to our type system. Instead of monitoring whether

a function is monotonic in all variables, we must keep track of the monotonicity in each

variable. Despite this difficulty, we can still transform this problem into a second-order

cone program with the command

let csf=apply_mp convex_quad csf;;

This produces the following program

min y

over x1 in Real[1,1], x2 in Real[1,1], x3 in Real[1,1],

x4 in Real[1,1], y in Real[1,1], _4 in Real[1,1],

_5 in Real[1,1], _6 in Real[1,1], _17 in Real[1,1],

_18 in Real[1,1]

st {[1.] - ([-1.])’ * _5[1 , 1]; {[2.] * [-1. -10.] *

{x1[1 , 1] ; x2[1 , 1]}; [1.] + ([-1.])’ *

189

_5[1 , 1]}} >=Q [0.; 0.; 0.]

{[1.] - ([-1.])’ * _17[1 , 1]; {[2.] * [-1. 2.] *

{x2[1 , 1] ; x3[1 , 1]}; [1.] + ([-1.])’ *

_17[1 , 1]}} >=Q [0.; 0.; 0.]

{[1.] - ([-1.])’ * _4[1 , 1]; {[2.] * [1.] *

_18[1 , 1]; [1.] + ([-1.])’ * _4[1 , 1]}}

>=Q [0.; 0.; 0.]

{[1.] - ([-1.])’ * _18[1 , 1]; {[2.] * [-1. 10.] *

{x1[1 , 1] ; x4[1 , 1]}; [1.] + ([-1.])’ *

_18[1 , 1]}} >=Q [0.; 0.; 0.]

{[1.] - ([-1.; 10.; 1.; 1.])’ * {y[1 , 1]; {_4[1 , 1];

{_5[1 , 1]; _6[1 , 1]}}}; {[2.] * [1.] *

_17[1 , 1]; [1.] + ([-1.; 10.; 1.; 1.])’ *

{y[1 , 1]; {_4[1 , 1]; {_5[1 , 1];

_6[1 , 1]}}}}} >=Q [0.; 0.; 0.]

{[1.] - ([-1.])’ * _6[1 , 1]; {[2.] * [-2.2360679775

2.2360679775] * {x3[1 , 1]; x4[1 , 1]}; [1.] +

([-1.])’ * _6[1 , 1]}} >=Q [0.; 0.; 0.]

190

This corresponds to the problem

min
(y,xi ,ti)∈�10∈�5

y

st



















































1+ t5

2(−x1 − 10x2)

1− t5



















































�Q 0



















































1+ t17

2(−x2 + 2x3)

1− t17



















































�Q 0



















































1+ t4

2t18

1− t4



















































�Q 0



















































1+ t18

2(−x1 + 10x4)

1− t18



















































�Q 0



















































1+ y− 10t4 − t5 − t6

2t17

1− y+ 10t4 + t5 + t6



















































�Q 0



















































1+ t6

2(−
√

5x3 +
√

5x4)

1− t6



















































�Q 0

Hence, we have successfully generated a linear second-order cone program from the chained-

singular function. As a final note, this problem highlights one possible challenge when em-

ploying transformations during the modeling process. Depending on what order we expand,

transform, and contract a constraint we arrive at different transformations. These formula-

tions may possess different properties. However, by automating these transformations, we

can quickly check and determine which formulation is best for a particular application.

191

7.3 Type Checking

In the following discussion, we give a two short examples of the type-checker and

explore the accuracy of its analysis.

We begin with a simple functionx, y 7→ (x2 + y2).5. Of course, we recognize this as the

two-norm of the vertical concatenation ofx andy. Thus, the result must be convex . We

represent this function in our language with

let sigma=[<:var< x in Real[1,1] >> ; <:var< y in Real[1,1] >>];;

let twonorm= <:exp< (xˆ2.+yˆ2.)ˆ2. >> ;;

Then, we type-check the expression with the command

let _=type_expr sigma twonorm;;

This yields the result

- : Type_mathprog.texpr =

TModel ([[(‘Convex, ‘Bottom, ‘Bottom, ‘Real)]], 1, 1, ‘Symmetric)

In other words, we assert that we have specified a convex function with an unknown poly-

nomality and monotonicity.

This example highlights one of the strengths of our analysis. As an alternative to our

approach, we could simply catalog the convexity and monotonicity of each function such

as addition, exponentiation, etc. Then, we know that the function x 7→ f (g(x)) is convex

when f is convex, increasing andg is convex. However, notice that the function the function

192

x 7→ x.5 is not convex. In fact, this function is concave forx ≥ 0. Thus, this alternative

scheme can not correctly assert the convexity of this function.

In a similar manner, we can express the Frobenius norm of a matrix with the following

command

let sigma=[<:var< x in Real[5,3] >>];;

let frobnorm= <:exp< (trace(trans(x)*x))ˆ0.5 >>;;

After we type check the result, we see that

- : Type_mathprog.texpr =

TModel ([[(‘Convex, ‘Bottom, ‘Bottom, ‘Real)]], 1, 1, ‘Symmetric)

Thus, we can assert the convexity of this function. This example demonstrates that we

correctly type difficult expressions such astrans(x)*x. Recall, we must represent the

type of this expression with a matrix of properties. Then, even after taking the trace and

square root of the result, we prove convexity.

193

Chapter 8

Conclusions

During our discussion, we have accomplished the following.We have developed a

grammar suitable for representing a broad class of mathematical programs. Next, we have

designed a type system which allows us to constructively prove properties about our prob-

lem. Based on this structure, we have developed a system of semantics which give an

accurate mathematical depiction of our language. This foundation has allowed us to spec-

ify a series of transformations that manipulate our problem. Finally, we have concluded

our discussion by considering three different examples.

The grammar specifies the internal structure of our language. We have found that a

reduced version of lambda calculus that does not contain abstractions, but does include

constants, allows us to be surprisingly expressive. This simplicity has been somewhat offset

by the complexity of our types. Nonetheless we have found this complexity necessary to

accurately depict the structure of a program.

The type system allows us to automatically characterize themathematical properties of

our problem. We have found that the most interesting typing rules occur during function

application. This application allows us to combine variables and constants into more com-

194

plicated functions. It is at this point where we determine the mathematical properties of the

resulting composition. In practice, this reduces to cataloging the different scenarios that

can occur.

The semantics give the mathematical characterization of our language. We have found

the key to this process has been not to view operations such asaddition as a function that

maps two concrete numbers to another. Rather, we view each function as a composition.

In other words, we view addition as a function that accepts two functions as its arguments,

then produces another function where we add the two arguments together. This allows us to

establish a direct connection between our types, which represent mathematical properties,

and our expressions. Once we define our semantics, we prove soundness of our language.

This gives us confidence that our type system accurately depicts the mathematical proper-

ties of our problem.

We have used transformations as our primary tool for taking advantage of the under-

lying structural properties of our problem. In order to simplify this process, we have es-

tablished a system of transformations that expand and contract the problem. These trans-

formations allow us to expose many of the problem’s hidden structural features. Once we

expose these features, we can reformulate the problem into amore computable form.

Our three examples have been chosen to demonstrate the following. The max-cut prob-

lem demonstrates the necessity of transformations from a modeling perspective. Simply,

the semidefinite relaxation appears nothing like the original formulation. Thus, asking a

user to manually manipulate the problem runs the risk of introducing errors. Second, the

195

chained singular function demonstrates the necessity of program analysis during program

manipulation. Although this problem contains many convex,quadratic functions, they are

not presented in a nice canonical form. Thus, we must ascertain their presence during our

program analysis. Finally, the two and Frobenius norms demonstrate the power of our type

system. Systems such as CVX and YALMIP use a much simpler scheme which can not

prove the convexity of these functions. While our system is more complicated, it provides

us with more flexibility.

8.1 Future Work

Our ultimate goal lies in extending these techniques to general purpose codes. In other

words, we believe that we can prove whether a function written in C or Fortran is convex,

polynomial, monotonic, or possesses some other mathematical property. Certainly, our

analysis becomes more complicated. For example, consider the routine

float polynomial(float x,int n){

float y=1;

for(int i=0;i<n;i++)

y*=x;

return y;

}

Depending on the value ofn, the problem may be linear, quadratic, or neither. Regardless,

we know this function represents some sort of polynomial. Thus, we don’t expect that

196

we can prove a certain property in all cases. Rather, we believe that we can prove these

properties in many different, common situations.

Once we can prove properties about a general routine, we may transform it. This be-

comes especially interesting when generalizing the expansion and contraction transforma-

tions. Essentially, this amounts to decomposing a routine into several pieces which expose

structure. This work is closely related to compiler optimizations. However, instead of

transforming a routine so that it runs faster, we design transformations that alter the math-

ematical properties.

Each of these developments forces us to enrich the type system. As routines become

more complicated, we require additional information to correctly classify their properties.

For example, if we could guarantee that the variablex ≥ 0, we could assert that the function

x 7→ 1/x is convex. Which properties we analyze depends on the structure of the problem.

Nonetheless, we have established a flexible typing scheme which extends to other proper-

ties.

Within combinatorial optimization, we have established a series of transformations that

allow us to automatically relax an integer program into a semidefinite program. For exam-

ple, we can apply the same techniques used to transform the max-cut problem to the graph

partitioning problem. While these relaxations frequentlygive poor bounds, their overall

utility remains unknown. Simply, generating these relaxations has been so prohibitive in

the past, that researchers have been unable to comprehensively explore the accuracy of

these relaxations. It may be that these relaxations are wellsuited toward branch and bound

197

algorithms. However, we must make generating these problems far easier before we can

adequately explore this possibility.

Within global optimization, these techniques show promising applicability. One com-

mon technique to global optimization involves approximating each routine by a piecewise

linear function. This results in an integer program that approximates the true problem. We

can use our transformational techniques to automatically derive this formulation.

This same idea applies to problems within robust optimization. One possible robust

formulation of a linear program results in a second-order cone program. Similarly, a robust

formulation of a second-order cone program results in a semidefinite program. We can use

our methods to automatically derive each of these formulations.

Finally, we should not restrict ourselves to only considering mathematical programs.

Discovering and exploiting hidden structure within a problem has direct implications to

differential equations, dynamical systems, and other mathematical models. In the end, our

goal lies in developing techniques that allow us to analyze and transform each of these

problems.

198

Bibliography

[1] E. D. Andersen and K. D. Andersen. The MOSEK Interior Point Optimizer for Lin-

ear Programming: An Implementation of the Homogeneous Algorithm. In H. Frenk,

K. Roos, T. Terlaky, and S. Zhang, editors,High Performance Optimization, vol-

ume 33 ofApplied Optimization, pages 197–232. Kluwer Academic Publishers, 1999.

[2] M. Aponte, A. Laville, M. Mauny, A. Suarez, and P. Weis. The CAML reference

manual. Technical Report 121, INRIA, Domaine de Volceau, Rocquencourt, 1990.

[3] J. W. Backus, F. L. Bauer, J. Green, C. Katz, J. McCarthy, A. J. Perlis, H. Rutishauser,

K. Samelson, B. Vauquois, J. H. Wegstein, A. van Wijngaarden, and M. Woodger.

Report on the algorithmic language ALGOL 60.Commun. ACM, 3(5):299–314, 1960.

[4] J. W. Backus, F. L. Bauer, J. Green, C. Katz, J. McCarthy, A. J. Perlis, H. Rutishauser,

K. Samelson, B. Vauquois, J. H. Wegstein, A. van Wijngaarden, and M. Woodger.

Revised report on the algorithm language ALGOL 60.Commun. ACM, 6(1):1–17,

1963.

[5] John Backus. The history of Fortran I, II, and III. pages 25–74, 1981.

[6] Francisco Barahona, Martin Grötschel, Michael Jünger, and Gerhard Reinelt. An ap-

199

plication of combinatorial optimization to statistical physics and circuit layout design.

Operations Research, 36(3):493–513, 1988.

[7] E. M. L. Beale. Matrix generators and output analyzers. In Proceedings of the Prince-

ton Symposium on Mathematical Programming, pages 25–36. Princeton University

Press, 1970.

[8] Steven J. Benson and Yinyu Ye. DSDP4-a software package implementing the dual-

scaling algorithm for semidefinite programming, 2002. Technical Report ANL/MCS-

TM-255.

[9] H. Bhargava, R. Krishnan, and P. Piela. Formalizing the semantics of ASCEND.

Proceedings of the 27th Hawaii International Conference onthe System Sciences.,

pages 505–516, 1994.

[10] Hemant K. Bhargava, Ramayya Krishnan, and Peter Piela.On formal semantics and

analysis of typed modeling languages: An analysis of ascend. INFORMS J. on Com-

puting, 10(2):189–208, 1998.

[11] Johannes Bisschop and Alexander Meeraus. On the development of a general alge-

braic modeling system in a strategic planning environment.In Mathematical Pro-

gramming Study 20, pages 1–29. North-Holland Publishing Company, 1982.

[12] Robert E. Bixby. ILOG CPLEX. http://www.ilog.com/products/cplex/.

[13] P. T. Boggs and J. W. Tolle. Sequential quadratic programming. InActa Numerica,

pages 1–51. Cambridge University Press, 1995.

200

[14] J. M. P. Booler. A method for solving crew scheduling problems. Operational Re-

search Quarterly (1970-1977), 26(1):55–62, 1975.

[15] Brian Borchers. CSDP, a C library for semidefinite programming. Optimization

Methods and Software 11, pages 613–623, 1999.

[16] Michel Bréal. Semantics: Studies in the Science of Meaning. Henry Holt and Com-

pany, 1900.

[17] Michael R. Bussieck and Alex Meeraus.General Algebraic Modeling System

(GAMS), pages 137–157. Springer, 2003.

[18] Alonzo Church. A set of postulates for the foundation oflogic. The Annals of Math-

ematics, 33(2):346–366, 1932.

[19] Alonzo Church.The Journal of Symbolic Logic, 5(2):56–68, 1940.

[20] Andrew R. Conn, Nicholas I. M. Gould, and Philippse L. Toint. Testing a class of

methods for solving minimization problems with simple bounds on the variables.

Mathematics of Computation, 50(182):399–430, 1988.

[21] Robert L. Constable, Stuart F. Allen, H. M. Bromley, Walter Rance Cleaveland, J. F.

Cremer, Robert W. Harper, Douglas J. Howe, Todd B. Knoblock,Nax P. Mendler,

Prakash Panangaden, James T. Sasaki, and Scott F. Smith.Implementing Mathematics

with the Nuprl Development System. Prentice-Hall:NJ, 1986.

201

[22] G. Cousineau, P. L. Curien, and M. Mauny. The categorical abstract machine.Lecture

Notes in Computer Science, 201:50–64, 1985.

[23] H. B. Curry. Functionality in combinatory logic.Proceedings of the National

Academy of Sciences of the United States of America, 20(11):584–590, 1934.

[24] Haskell B. Curry. The combinatory foundations of mathematical logic.The Journal

of Symbolic Logic, 7(2):49–64, 1942.

[25] G. B. Dantzig. Programming in a linear structure. USAF,Washington D.C., 1948.

[26] G. B. Dantzig. Linear programming.Operations Research, 50(1):42–47, 2002.

[27] G. Dowek, A. Felty, H. Herbelin, G. Huet, C. Paulin, and B. Werner. The coq proof

assistant user’s guide, version 5.6. Technical Report 134,INRIA, December 1991.

[28] R. J. Duffin. Cost minimization problems treated by geometric means.Operations

Research, 10(5):668–675, 1962.

[29] R. J. Duffin. Dual programs and minimum cost.Journal of the Society for Industrial

and Applied Mathematics, 10(1):119–123, 1962.

[30] R. J. Duffin, E. L. Peterson, and C. Zener.Geometric Programming– Theory and

Application. John Wiley & Sons, Inc., 1967.

[31] Anthony V. Fiacco and Garth P. McCormick.Nonlinear Programming: Sequential

Unconstrained Minimization Techniques. John Wiley & Sons, Inc., 1968.

202

[32] Robert Fourer. Modeling languages versus matrix generators for linear programming.

ACM Transactions on Mathematical Software, 9(2):143–183, 1983.

[33] Robert Fourer, David M. Gay, and Brian W. Kernighan. A modeling language for

mathematical programming.Management Science, 36:519–554, 1990.

[34] Robert Fourer, David M. Gay, and Brian W. Kernighan.Design Principles and New

Developments in the AMPL Modeling Language, pages 105–135. Springer, 2003.

[35] Gottlob Frege. On sense and nominatum. InReadings in Philosophical Analysis,

pages 85–102. 1949. Translated by Herbert Feigl from, ”Ueber Sinn und Bedeutung,”

Zeitschr. f. Philos. und Philos. Kritik; 100, 1892.

[36] K. Fujisawa and M. Kojima. SDPA(semidefinite programming algorithm) : User’s

manual, 1995.

[37] P. Gahinet, A. Nemirovskii, A.J. Laub, and M. Chilali. The LMI control toolbox. In

Proceedings of the 33rd IEEE Conference on Decision and Control, volume 3, pages

2038–2041, 1994.

[38] U. M. Garcia-Palomares and O. L. Mangasarian. Superlinearly convergent quasi-

newton algorithms for nonlinearly constrained optimization problems.Mathematical

Programming, 11(1):1–13, 1976.

[39] Philip E. Gill, Walter Murray, Michael A. Saunders, J. A. Tomlin, and Margaret H.

Wright. On projected newton barrier methods for linear programming and an equiv-

203

alence to karmarkar’s projective method.Mathematical Programming: Series A and

B, 36(2):183–209, 1986.

[40] Michael J. Gordon, Arthur J. Milner, and Christopher P.Wadsworth.Edinburgh LCF

A Mechanised Logic of Computation, volume 78 ofLecture Notes in Computer Sci-

ence. Springer-Verlag, 1979.

[41] Michael Grant.Disciplined Convex Programming. PhD thesis, Stanford University,

2005.

[42] Michael Grant, Stephen Boyd, and Yinyu Ye. Disciplinedconvex programming.

Global Optimization: From Theory to Implementation, pages 155–200, 2006.

[43] Magnus R. Hestenes. Multiplier and gradient methods.Journal of Optimization

Theory and Applications, 4(5):303–320, 1969.

[44] Sa Neung Hong and Michael V. Mannino. Formal semantics of the unified modeling

languageLu. Decision Support Systems, (13):263–293, 1995.

[45] W. A. Howard. Formulae-as-types notion of construction. In To H.B. Curry: Essays

on Combinatory Logic, Lambda Calculus and Formalism. Academic Press, 1980.

[46] N. K. Karmarkar. A new polynomial-time algorithm for linear programming.Com-

binatorica, 4:373–395, 1984.

[47] W. Karush. Minima of functions of several variables with inequalities as side con-

straints. Master’s thesis, University of Chicago, 1939.

204

[48] L.G. Khachian. A polynomial algorithm in linear programming. Soviet Math. Dokl.,

20:191–194, 1979. Translated from Russian.

[49] S. C. Kleene and J. B. Rosser. The inconsistency of certain formal logics.The Annals

of Mathematics, 36(3):630–636, 1935.

[50] Donald E. Knuth. The remaining trouble spots in ALGOL 60. Commun. ACM,

10(10):611–618, 1967.

[51] Kazuhiro Kobayashi, Sunyoung Kim, and Masakzu Kojima.Sparse second order

cone programming formulations for convex optimization problems. Technical report,

Department of Mathematical and Computing Sciences Tokyo Institute of Technology,

2007.

[52] H. W. Kuhn and A. W. Tucker. Nonlinear programming.Proceedings of Second

Berkeley Symposium on Mathematical Statistics and Probability, pages 481–492,

1951.

[53] P. J. Landin. The mechanical evaluation of expressions. The Computer Journal,

6(4):308–320, January 1964.

[54] P. J. Landin. A correspondence between ALGOL 60 and church’s lambda-notation:

Part i. Communications of the ACM, 8(2):89–101, February 1965.

[55] P. J. Landin. A correspondence between ALGOL 60 and church’s lambda-notation:

Part ii. Communications of the ACM, 8(3):158–165, March 1965.

205

[56] J. Löfberg. YALMIP : A toolbox for modeling and optimization in MATLAB. In

Proceedings of the CACSD Conference, Taipei, Taiwan, 2004.

[57] P. Lucas and K. Walk. On the formal description of PL/I. Annual Review in Automatic

Programming, 6:105–182, 1969.

[58] Michel Mauny and Ascánder Suárez. Implementing functional languages in the cat-

egorical abstract machine. InLFP ’86: Proceedings of the 1986 ACM conference

on LISP and functional programming, pages 266–278, New York, NY, USA, 1986.

ACM.

[59] A. Nemirovskii and P. Gahinet. The projective method for solving linear matrix in-

equalities. American Control Conference, 1994, 1:840–844 vol.1, 29 June-1 July

1994.

[60] Y. Nesterov and A. Nemirovski. A general approach to polynomial-time algorithms

design for convex programming. Technical report, Central Economic and Mathemat-

ical Institute, USSR Academy of Sciences, Moscow, 1998.

[61] Laurel Neustadter. Formalization of expression semantics for an executable model-

ing language. InProceedings of the Twenty-Seventh Annual Hawaii International

Conference on System Sciences, pages 492–504, 1994.

[62] P. Piela, T. Epperly, K. Westerberg, and A. Westerberg.ASCEND: An object-oriented

computer environment for modeling and analysis: The modeling language.Comput-

ers and Chemical Engineering, 15(1):53–72, 1991.

206

[63] Didier Rémy and Jérôme Vouillon. Objective ML: A simple object-oriented extension

of ml. In Proceedings of the 24th ACM Conference on Principles of Programming

Languages, pages 40–53, Paris, France, January 1997.

[64] Bertrand Russell.The Principles of Mathematics. George Allen & Unwin Ltd, 1903.

[65] Bertrand Russell. Mathematical logic as based on the theory of types. American

Journal of Mathematics, 30(3), 1908.

[66] Dana Scott. Mathematical concepts in programming language semantics. In1972

Spring Joint Computer Conference, pages 225–234. AFIPS Press, 1972.

[67] Dana Scott and Christopher Strachey. Toward a mathematical semantics for computer

languages. InProceedings of the Symposium on Computers and Automata, pages 19–

46, 1971.

[68] Christopher Strachey. The varieties of programming languages. InProceedings of the

International Computing Symposium 1972, pages 222–233, 1972.

[69] J.F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric

cones.Optimization Methods and Software, 11–12:625–653, 1999. Special issue on

Interior Point Methods (CD supplement with software).

[70] Alfred Tarski. The semantic conception of truth and thefoundation of semantics. In

Readings in Philosophical Analysis, pages 52–84. 1949. Reprinted from, ”Sympo-

sium on Meaning and Truth”, Philosophy and Phenomenological Research, Vol. IV,

1944.

207

[71] K. C. Toh, M. J. Todd, and R. Tutuncu. SDPT3–a matlab software package for

semidefinite programming.Optimization Methods and Software, 11:545–581, 1999.

[72] Lieven Vandenberghe and Stephen Boyd. Semidefinite programming.SIAM Review,

38(1):49–95, 1996.

[73] Fernando Vicuna.Semantic Formalization in Mathematical Modeling Languages.

PhD thesis, University of California Los Angeles, 1990.

[74] R. B. Wilson.A Simplicial Algorithm for Concave Programming. PhD thesis, Harvard

University, 1963.

[75] Margaret H. Wright. The interior-point revolution in optimization: History, recent

developments, and lasting consequences.American Mathematical Society, 42(1):39–

56, 2004.

208

