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Abstract

Over the years, mathematical models have become incréasmgplex. Rarely can we
accurately model a process using only linear or quadratictians. Instead, we must
employ complicated routines written in some programmingylage. At the same time,
most algorithms rely on the ability to exploit structurahferes within a model. Thus, our
ability to compute with a model directly relates to our dlgitio analyze it.

Mathematical programs exemplify theséhauult modeling issues. Our desire to accu-
rately model a process is mediated by our ability to solva¢iselting problem. Nonethe-
less, many problems contain hidden structural features wigen identified, allow us to
transform the problem into a more computable form. Thus, wstrdevelop methods that
not only recognize these hidden features, but exploit thgrtransforming one problem
formulation into another.

We present a new domain specific language for mathematiocgrgamming. The goal
of this language is to develop a system of techniques thawalk to automatically deter-
mine the structure of a problem then transform it into a masrdble form. Our technical
contribution to this area includes the grammar, type systerd semantics of such a lan-
guage. Then, we use these tools to develop a series of trarafons that manipulate the

mathematical model.
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Chapter 1

Introduction

Mathematical programming refers to a collection of formadthods used to model
and optimize a complicated process. These processesransany diferent settings such
as minimizing the operating cost of an airline[14] or ddsicig the optimal layout of a
microprocessor[6]. The goal of solving these problems fgban optimal set of parame-
ters that characterize the original system.

Although there exist a wide variety of tools that can solve athematical program,
these tools rarely understand the model in its natural fok@nually transforming one
form to another is diicult and error prone. Therefore, most analysts use a magdkin
guage. Modeling languages allow a user to describe a prablgeneral terms. Then, this
description is converted into a form that the solver uncdess.

Once we model a problem, we still must choose which solves®& rhe structure of
the problem predicates this decision. For example, wheptbiglem contains only linear
functions, we may use a solver built upon the simplex methodifferent problem may
necessitate a flerent solver. This decision becomes morgiclilt when these structural

components are not explicit. Frequently, we must transfoneformulation to another in



order to take advantage of certain properties.

This problem becomes more challenging when we model ouregewith a general
purpose code such as C. In this case, the mathematical pespef the routine are well
hidden. As a result, we may be forced to use less powerfulithgas than what the prob-
lem dictates. Alternatively, we may be forced to transfohm toutine into some auxiliary
form by hand.

As a result, we must develop the capacity to automaticalalyae a general purpose
routine. Then, we can transform the result into an altevadtrm. Of course, this is a very
difficult goal. Thus, as a first step, we can instead develop ary #ygpsame sort of tools
and techniques to a modeling language. Simply, modelinguages represent a restricted
subclass within general purpose routines.

We propose a new domain specific language for mathematiogtgamming. The core
of this research lies within two areas: clear, concise séicgthat accurately represent a
mathematical program and a rich type system that allows asdertain the mathematical
properties of a particular problem instance. Based on thiedation, we define a series of

transformations and prove their correctness.

1.1 General Purpose Routines

When we refer to the analysis of a general purpose routinenean the following.

Consider the C function

double linear(double *x){



double y=0.;

int i=0;

for(i=0;i<=5;i++)
y+=i*x[1];

return y;

Certainly, this routine is equivalent to the functigm x; + 2%, + 3X3 + 4%X4 + 5%s. Thus,
we see the routine represents a nice, linear function. Yetially all linear programming
solvers can not understand this form. Even if a solver coaltlthis routine, it can not
guarantee its linearity.

Ultimately, we wish to communicate this information to awwsl When a solver does
not understand this form, we want to transform the problamane the solver does. How-
ever, for the time being, we focus out@ts toward modeling languages. This same situa-

tion occurs albeit in a dierent form within these languages.

1.2 Transformation

Transformations provide us one powerful technique forrtgladvantage of structure.

In the simplest possible case, let us consider a problemedbitmn

min ax st bx> X
xeR



This problem is almost linear, but the constraint containalinear, nondterentiable
term, |x. If we recall the definition of absolute value, this consitastates thabx >
max(x, —x). However, wherbx s greater than the maximum of batrand-x, it must be

greater than both terms separately. This allows us to reftatie the problem into

min ax st bx> x
XeR

bx> —x

In this new problem, all functions are linear. Therefore,ca@ employ much more pow-
erful algorithms to solve this formulation than the first. Waeve may question whether we
need a computer tool to convert the constraxt |x| into bx > x andbx > —x. Certainly,
we can easily recognize and manipulate this constraint bg.hBlowever, in many cases
this situation is less clear.

Let us consider the max-cut problem from graph theory. Glaraa graph whose edges
contain nonnegative weights. When two nodes are discoatieet assume an edge exists

with weight zero. For example, the following diagram des@esuitable graph

The goal of the max-cut problem is to divide the nodes of alyiato two sets such that
we maximize the sum of the weights that pass between the twoldsing the same graph

4



as above, the following denotes a partition

The weight of this cut is 41. In order to model this problenbdieach node in the graph
with a unique index. Then, let; denote the weight of an edge that connects ndd@ode

J- This allows us to model the problem as
max 1Z:(l P Xi Wi
xel-1,10 4 - X)W

The designation ok as 1 or—1 denotes whether noddelongs to the first or second set.
Notice that whernx; and x; have the same sign, the term-1x;x; = 0 andw;; does not
contribute to the weight of the cut. When we want an upper damthe solution, we can
alternatively solve the following semidefinite program

1 1
max atr(WX) + 3tr(WE)

xeRN,XeSh

st Xi =1

whereW; = w;; andE denotes the matrix of all ones. Since this problem is nice and

5



convey, it is vastly easier to solve than the first. Howeves, tepresentation looks nothing
like the original problem. In fact, it provides no indicatithat it is related to a max-cut
problem at all. Nevertheless, there exists an intimate ecton between the two and it is
possible to derive the second formulation from the first inexhanical fashion.

This example highlights two fliculties that arise during modeling. First, an algebraic
model should be correspond closely to the specification efpitoblem. This helps us
easily spot and diagnose problems in the original formaitatiSecond, any change the
original problem necessitates a change to the reformulatd¢hen the reformulation from

one problem to another is complicated, filtering through emgnges can beftiicult.

1.3 Analysis

In many cases, identifying structural features requiresemveork. In the following
example, we discuss the automated transformation of areamstontaining the chained

singular function[20]
c(x) = Z(Xi + 10x41)? + 5(Xis2 — Xi43)* + (X1 — 2Xi42)* + 1006 — 10%,3)"

ieJ

whered = {1,5,...,n-3} andnis a multiple of 4. It is known that a constraint of the form
y > ¢(x) can be transformed into a second-order cone constrajni[8Lus investigate one

possible reformulation.



In the most simple case, we have a constraint of the form

y > (X1 + 10%)2 + 5(X3 — Xa)% + (X2 — 2X%3)* + 10(x, — 10x,)*

By introducing two auxiliary variables, we can reformul#tes constraint into

y > (%1 + 10%)? + 5(%3 — X4)*> + U+ V
U> (Xo — 2X3)*

v > 10(X; — 10x,)*

Now, since the square of any real number is positive, we cehduexpand this system

into

y > (X + 10%)? + 5(%3 — X4)*> + U+ V

t > 10X — 10x4)?

At this point we notice that the variablesandv serve mostly as place holders. Thus, we



can simplify this system slightly into

Y > (X + 10%)2 + 5(Xg — Xq)? + & + t2
s> (X — 2X3)2

t > 10(x, — 10x4)?

Before we continue, let us consider a transformation comtm@onvex cone program-

ming. Consider a constraint of the form
0> x"ATAx+a' x+ «

Through clever manipulation, we can reformulate the camstinto

1-c'x—y

2AX >q 0

1+c™x+y

where>q represents the partial order defined by the second-order. donother words,
we can transform a convex quadratic constraint into a secother cone constraint. This
new formulation is desirable since it allows us to employcgealgorithms designed for

second-order cone programs.



Now, let us return to our original problem. It turns out thatk of the constraints

y > (X + 10%)% + 5(X3 — X4)? + & + 2
s> (X — 2X3)2

t > 10(x, — 10x4)?

is both convex and quadratic. Therefore, we can reformdtteg® into second-order cone

constraints. However, they do not possess the nice cardoioa

0>x"ATAx+a x+a

Certainly, we should not constrain the user to this reprasem. Further, we claim it is
unreasonable to even ask them to prove whether a functiamigeg or quadratic. It is a
property that may be dicult to determine. As a result, we must analyze and determine

this property automatically.

1.4 Overview

Our solution to these problems lies in the design of a new mglanguage. The de-
sign consists of four separate parts: grammar, type sysemantics, and transformations.

The grammar specifies the internal structure of a mathealgtiogram. For example,
we specify that all problems must begin with the keywaorih followed by the objective

function. The objective function must be followed by the Wweyd over followed by vari-



ables, etc. While this specification is rigid, it serves asaalytic vessel. Thus, the user
may specify a problem in a much friendlier syntax.

Next, we define a type system. The type system serves two gespd-irst, it insures
that a mathematical program is well-formed. In other woitdsrevents absurd statements
such agy > XY, Second, we use the type system to assert properties abopitainlem.
This is how we determine whether a function is convex, a paiyial, or monotonic.

Once we define the type system, we specify the semantics danguage. Up until
this point, we essentially define a series of rules that mdaip grammar. The semantics
assign an unambiguous mathematical meaning to this gran@nae we define this mean-
ing, we prove that our system is consistent. In other wordsprove that all well-typed
programs correspond to actual mathematical programs. $éepabve that when our type
system asserts a certain property such as convexity, thgepy must hold . This gives us
confidence that our design is correct.

Finally, we use this machinery to design a series of transftions. Each transforma-
tion maps one piece of grammar to another. Then, we use thansiesito prove that this
reformulation is correct. Although their are an innumeealimber of possible transfor-
mations, we focus on those necessary to reformulate our@rgamabove. This provides

good balance of transformations that reformulate convelramconvex problems.
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Chapter 2

History

The study of modeling languages for optimization combiresgearch from optimiza-
tion, mathematical modeling, semantics, and type syst@ssach of these areas possesses
its own unique history, we do not provide a comprehensivemlte of their results. In-
stead, we summarize many of the important developmentscbfa@a and highlights how

these ideas intersect.

2.1 Optimization

Modern methods for computational optimization originateti9o47 with George Dantzig
[25, 26]. At the time, Dantzig was tasked with solving tramgation problems for the Air-
force. These problems required a scheduler to optimizesaiiobjective function bounded
by linear constraints. In order to solve this problem mdfeiently, Dantzig developed an
algorithm called the simplex method. The simplex methodsfihe solution of a linear pro-
gram by traversing the vertices of the feasible region. @éuth the algorithm is combina-
torial in nature and may run in exponential time, the aldponifinds a solution very quickly

in practice. To this day, it remains one of the most importgorithms to solve linear
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programs. It is implemented by many high performance pazkagch as CPLEX][12].

Since the simplex method relies on the structure of a lineagram, it is not well-
suited toward nonlinear programming. Thus, algorithms $bé/e nonlinear programs de-
veloped relatively independently from linear programmifigpe conditions for optimality
of a constrained nonlinear program were developed by Karu$B39 during his Masters
thesis[47]. Khuhn and Tucker rediscovered this result iB1192]. Later, these conditions
became known as the KKT conditions. This work was pivotatsiih characterized con-
ditions for optimality as a system of nonlinear equatioret tould be solved using New-
ton’s method. During the 1960’s, penalty and barrier meshloelcame popular[31], but
fell out favor since they lacked numerical stability. Dgitihe 1970’s, sequential quadratic
programming[74, 38, 13] and augmented lagrangian metd8tiajere developed and they
remain popular to this day. However, one of the most impodaxelopments in optimiza-
tion history came during the 1980’s with the interior poiewelution[75].

In 1979 Khachian developed the ellipsoid method for lineagpamming[48]. It was
the first algorithm developed that solved a linear programpalynomial time. It difered
from the simplex method since it generalized ideas fromineal programming and did
not rely the the combinatorial nature of the feasible regionfortunately, the algorithm
did not perform well in practice and fell out of favor. In 198Z&rmarkar announced a new
polynomial time algorithm for linear programming[46] thaas far more icient than the
simplex method in practice. Although details of his work eened absent at the time,

his algorithm was later shown to be equivalent to a logari¢chiparrier function applied

12



to a linear program[39]. In practice, the algorithm wéisceent, but not as revolutionary
as originally announced. Nevertheless, it was a very ingoordiscovery since it began
the unification between the theory of linear and nonlineag@mming. Algorithms that
used this new approach became known as interior point metHitdce the 1980's, inte-
rior point methods became an important and popular metholddit linear and nonlinear
programming.

In 1988 Nesterov and Nemirovski proved that polynomialetiedgorithms could be
extended to convex programs[60]. This led to the study ofidefimite and second-order
cone programs during the 1990’s[72]. This work was significance it was the first time
an dficient algorithm existed that found the global solution ofradal class of nonlin-
ear programs outside of geometric programming[29, 28, BOjact, as these algorithms
became more mature, the distinction between linear andreanl programming became
less pronounced. Instead, it became useful to distingueshden convex and nonconvex
programs.

Although convex programs can be solved in polynomial tinf¢ient solvers based
on this theory have only been realized for linear, secom#ocone, and semidefinite pro-
grams. Although many high quality solvers exist for linead &emidefinite programming
[15, 71, 36, 8, 69], only two can additionally solve secomdes cone programs. As an
alternative approach, some solvers can solve general xgegrams very quickly us-
ing specialized algorithms from nonlinear programminghiLit generally can not represent

matrix constraints necessary for semidefinite programming
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2.2 Mathematical Modeling

As algorithms to solve optimization problems evolved, si tthe technology to rep-
resent them. Prior to the 1970’s, interfacing to solvers {aegely problem and solver
dependent. In the late 1970's and early 1980’s MPS files bedam standard format to
represent problems. MPS files store a problem using welhel@fivery rigorous format.
Since the format was not designed to create problems by haother application called a
matrix generator[7] was needed to create an MPS file. Frelyuematrix generators were
custom Fortran programs.

In the late 1970’s, the World Bank funded the developmentoélgebraic modeling
language for optimization called GAMS[11, 17]. This apmiodiffered from that of matrix
generators since it allowed a mathematical model to be septed in its algebraic form at a
very high level[32]. It also allowed users to representrtpepblem over sets of data rather
than rigidly defined indices. This improved the model’s idaitity and reliability. Over
the years, GAMS continued to evolve as it incorporated auttit algebraic structures. It
remains one of the more popular modeling languages.

In the early 1980’s, Bell Labs became interested in smaltisfized programming
languages for specific applications. After Karmarkar maideannouncement of a new
polynomial time algorithm for linear programming, David Yz&80b Fourer, and Brian
Kernighan began work on a language called AMPL[33, 34]. Binto GAMS, the goal of
AMPL was to provide a high-level algebraic description ofalgem. A key feature of this

was a flexible approach to defining sets of data. As AMPL deaoit supported many
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new features such as stochastic programming. It remainpagaool to this day.

In 1989, Peter Piela developed a new object-oriented, glydyped modeling language
for chemical processes called ASCEND[62]. Piela was pamibtivated by the lack of
formal semantics in modeling languages such as GAMS. Lifwisrled to the formal study
of ASCEND’s semantics by Bhargava, Krishnan, and Piela9, ASCEND’s design lies
in stark contrast to most available modeling languagegniiains one of the only modeling
languages formally designed, studied, and still used.

In 1990, Fernando Vicuna became the first person to developalosemantics for a
modeling language[73]. During his thesis, he cited incstesicies in the semantics of
GAMS, LINGO, and AMPL. Motivated by these problems, he depeld the formal se-
mantics of a modeling language called SML using attributedrgmars. While the lan-
guage SML never became popular, this work remains impostiace it demonstrated the
necessity and utility of formal techniques applied to thsigie of a modeling language.

Although Vicuna and Bhargava et al. were the first to studysdraantics of modeling
languages, they were not the last. In 1994, Neustadter zatlthe semantics of what
he termed executable modeling languages[61]. This entapdiany algebraic modeling
language processed by a computer. In 1995, Hong and Mannided the denotational
semantics of the Unified Modeling Languad®;[44]. This work was notable since it was
the first time the denotational style of semantics was agpbex modeling language.

In 1994, Gahinet, Nemirovskii, Laub, and Chilali developed LMI toolbox[37]. The

toolbox was implemented as an object oriented library ms&iiMATLAB. Up until this
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point, there was no tool available that allowed the algeli@mulation of a semidefinite
program. In addition to the modeling utility, the toolboxnoa packaged with a solver
based on Nemirovskii and Gahinet’s projective algorith@h/®Jnfortunately, the solutions
produced by the solver were extremely poor. Therefore,dblbox fell out of favor once

alternative solvers became available.

In 2001, Johan Lofberg developed a MATLAB modeling toolledl YALMIP[56].
Originally, it was designed to allow the algebraic spectfaa of linear matrix inequali-
ties. Later, it was extended to model a broad class of opétioia problems. Unlike, the
LMI toolbox, YALMIP was not tied to a particular solver. Thied to a much larger user
base than the LMI toolbox.

In 2005, Michael Grant developed a new language called CVixadihis dissertation
at Stanford[41, 42]. Although YALMIP could model convex eprograms, formulating
them was often diicult. Frequently, a cone program was created by reforrmgatinon-
linear program. CVX automated many of these transformatidhchael advocated an idea
called disciplined convex programming. In this approaaw models are created from a
toolbox of functions that are known to be convex. These fonstare manipulated by a
series of transformations that are known to preserve catyveiis ideas were realized in

a MATLAB toolbox. Subsequently, YALMIP incorporated manfytbese techniques.
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2.3 Semantics

The term semantics embodies three separate, but relatgslifidinguistics, logic, and
computer science. In each case, the goal of semantics isigaseaning to some object.
In linguistics, the goal is to assign meaning to spoken lagg{l6]. In logic, foundational
guestions are asked about meaning of truth. In computenseieneaning is assigned to a
piece of code.

The semantics of logic originated in article by Frege[35itten in 1892. Frege dis-
cussed how the statemeat= b differed from that ofa = a. In order to analyze this
question, he dierentiated between the sense of a statement and its nominatthough
the nominatum of sentence could be defined in maffeidint ways, he argued the correct
definition was the statement’s truth value. Then, he redtcedjuestion to whether one
sentence could be replaced with another. He concludedbatiEtwo statements had the
same truth value, if they ffered in sense, they were not the same. Therefore, the stateme
a = bwas not equivalent ta = a even whera andb possessed the same truth value.

Later, Tarski considered the semantic meaning of truth[ifOhis discussion, he ana-
lyzed the liar's paradox, "This statement is false.” He adjthe paradox arose because it
was posed in a semantically closed language. A semantabgd language contained, in
addition to its expressions, the names of the expressionglaas the concept of truth. In
this way, a sentence could refer to the truth of itself. Tohesthis antinomy, he employed
two separate languages: the object language and the nmefaalge. The object language

was the language under discussion. The meta-language e/ahtiuage used to talk about
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the first. In this framework, the liar's paradox could not lwsed.

The formal semantics of computer languages arose out ossigeln 1960, the re-
port for Algol 60 was first published[3]. The language intwodd many new features, but
the semantics were given in prose. As a result, there exmstaty ambiguities in the de-
sign. Later, a revised report was published in an attempggolve these ambiguities[4].
Even after the revised report, many problems still exi§@H[It became clear, that formal
methods were necessary to specify the semantics of a laaguag

In 1964, Landin noticed a many similarities between lamtadeLdus and programming
languages[53]. Later, he commented more specifically abheigimilarities with Algol[54,
55]. He postulated that the semantics of Algol 60 could beifpd by lambda calculus.
In essence, the discussion of semantics would be reducestoilding the object language
by the meta-language. This idea influenced the design of rat#ver languages such as
PL/I[57].

In 1971, Scott and Strachley reconsidered the use of landidalas as a meta-language
[67, 66, 68]. Although lambda calculus provided a relagnaear semantics, they viewed
it as an operational calculus rather than a mathematicadusecs. Instead, they defined a
series of rigorously defined domains. These domains indlbd¢éh syntax and mathemati-
cal objects. Then, they defined a set of functions that mappediomain to another. These
functions mapped a piece of syntax to its meaning. By réstg¢chemselves to partially or-
dered domains that contained a bottom element and mongtmmtnuous functions, they

could model even non-terminating, recursive functionseiftvork formed the foundation
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of denotational semantics.

In 1985, Cousineau, Curien, and Mauny developed a new kingodtational seman-
tics for languages based on lambda calculus[22]. They edtibat cartesian closed cat-
egories provided the correct framework for modeling lambalulus. As a result, they
could map a program to a category. A morphism in the categonjdcbe thought of as
a series of commands executed by a compiler. This led to thel@@ment of the OCaml

programming language[58, 2, 63].

2.4 Type Systems

The theory of types originated when Bertrand Russell pregasparadox within the
framework of Frege’s set theory[64, 65]. He found that thedfeall sets that do not
contain themselves led to a contradiction. In order to stiieantinomy, he proposed a
hierarchy of propositional functions. The lowest level @ned propositions that did not
contain variables. These were called elementary propaositr individuals. The next level
contained propositions whose variables ranged over tarrtigeilevel below. In this way,
he avoided what he termed the, "vicious-circle principle.”

In 1932, Church introduced lambda calculus as a new formstieay of logic that
aimed to avoid Russell's paradox[18]. Instead of using sy divorced the law of ex-
cluded middle. He contended that this law led to Russellts atfier paradoxes. Later,
Church’s students proved that this system was inconsiateittwas sffered from a vari-

ant of Richard’s paradox[49]. Despite thigtttulty, the system proved to be surprisingly
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expressive. In 1940, Church incorporated type theory atodda calculus which led to a
consistent theory[19].

In 1936, Curry discovered a connection between types aasigrio combinators and
logical implications[23]. This connection was clarifiedarpaper published in 1942[24].
As the link between combinatory logic and lambda calculusb®e clear, this meant there
was a direction connection between a program written in tardalculus and a mathemat-
ical proof. This idea became known as the Curry-Howard spwadence[45].

Types were intimately connected to programming languages their inception. When
Fortran was designed, it contained only two types: integadsfloating point numbers[5].
At the time, programmers used these types for performaricerrthan correctness reasons.
Subsequent programming languages such as Algol and Paschtypes as a way to elim-
inate common programming errors. Certainly, these langsiagroduced many additional
kinds of types such as characters or structures. Howevetafaentally these types were
relatively primitive.

Gordon, Milner, and Wadsworth introduced a new languadea®IL in 1979[40]. By
this point, the connection of lambda calculus to prograngémguages was clear. Thus,
there was great interest in creating languages suitablgréming theorems. As such, ML
included a much richer variety of types such as universahtifiers and arrow types. In
addition, it did not require explicit type annotations awdts able to infer type information
by employing the Hindley-Milner type inference algorithr@riginally intended for use

with the proof system LCF[40], ML and its variants also fodrt@e foundation for the
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systems NuPRL[21] and Coq[27].
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Chapter 3

Grammar

While we understand mathematical programming and tramsfbons in mathematical
terms, our goal is to rigorously develop a blueprint for a lemguage. We begin by
developing the grammar of the language. The grammar defm&ghe language should
look. For example, we can stipulate that all mathematicadjams must start with either
min or maxfollowed by a function. In addition to developing grammar foe language,
we must also develop grammar for a system of types. Typessept properties that an
expression may possess. For example, the statemettas type integer which asserts
that the expression must evaluate to an integer. While weldp\the grammar for types

now, we discuss the rules that define the type system later.

3.1 Preliminaries

Generally, there are two kinds of grammar. The abstractagydéfines an internal
representation that is convenient for manipulating a @grThe concrete syntax defines
what a programmer must actually type. Certainly, there iskabletween the two, but we

focus on the abstract syntax. While this form may seem araatimes, it is important to
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stress that a programmer is not restricted to using thisagyfithe concrete syntax takes a
much friendlier form.

We define grammar using what is called Backus-Naur form (BINF a notation that
inductively defines the structure of a language. For exaym@alefine an extremely simple
calculator with the grammar

ecE:=c|flee¢€

where{e, e} denotes a tuple of expressions. This states that an expnassither a constant
or a binary function. These functions can include algebogierations such as addition,
subtraction, multiplication, and division. It can alsolumte logical operations such as

andand. Using this grammar, we can define the program

+{x{1, 2}, 3}

which we abbreviate as

1«2+3

Notice that we did not build operator precedence into thiswdmn. This is a detail built
into the concrete syntax, not the abstract.
Types also have grammar. For example, associated with #mergar above, we define

types

teT :=B|Q
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In other words, every expression must be a boolean or amedtio

Finally, we must also define grammar for a device called asdntThe context will
contain type information about each of the built-in funogo We define the grammar for
the context as

reG:={f :{t,t}—>t}?

where{}} denotes a sequence of lengtindexed byj. Using this grammar, we can define

the context

{(+:{Q.Q - Q,
-:{QQ—-Q,
*{Q, Q) = Q,
/1Q,Q} = Q,
and: {B, B} —» B,
or: {B, B} —» B}

The context becomes important during the definition of tgpures.

3.2 Formal Definition

We build our mathematical program from a series of modeltions. Since the type
of these functions will be central to our understanding @f ldmguage, we present their

grammar first.
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Convexity ceCi=/| - | ~|L

Polynomality pe Pi=al|(a,d)|(a,a,A)| L
Monotonicity meM:=—| 7|\, |L
Codomain o= O::=R|Z|{0,1}]|{-1, 1}
Symmetry ¥Yi=%|1

Types te Ti={(c,p,mo)" y}In|o
Domain de D::=0™"|S"

Function Context FreG:={f: {tyf — t}?

Decision Variable Context X € S::={x: d}}

Our language determines whether a model function is covpglynomial, or monotonic.
We represent the convexity of a function as one of four péssises. A function is either
affine, concave, convex, or something unknown. Similarly, vpeagent the polynomality
of a function as one of four possible cases. A function issgitlonstant, linear, quadratic, or
something unknown. Notice that we not only determine whredhfenction is a low-order
polynomial, but we also determine the @dgents associated with the function. Next, we
represent the monotonicity of a function as one of four gmesstates. Either a function
is constant, increasing, decreasing, or something unknéwaddition, we determine the
codomain of each model function. The codomain must lie withie set of real, integer,
zero-one integer, or plus-minus one integer numbers. Weowall four of these proper-
ties into a single typéc, p, m, o){}"‘ which represents a matrix of the above properties of size

mx nindexed byi andj. Additionally, we determine whether the codomain of thestasg
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matrix function is symmetric or unknown. This combined whie naturals and constraints
form the types that expressions may inhabit. Next, the dorabeach model function is
defined by the domain of the decision variables. This can batax@omain of any of the
above sets or a real symmetric matrix. Finally, we define taatexts. The first contains
the type of the predefined functions while the second costhia type of the decision vari-
ables. The syntagx}" denotes a sequence of elememteng indexed byi. We define the
empty sequence by and the concatenation of two sequences$ {y}’j‘. In addition, we
frequently omit indices when they are obvious. For exan'{;{){e, p,m, o)™, y}}E denotes a
list of model function types. The notati@p; denotes thei(j)th convexity property of the
kth argument.

For example, let us consider the properties of the function

e RPZ v e R o X Xi1y1 + X2y f1(X)
€ ,ye R? > Xy = =

Xo1Y1 + XooYo f2(x)
This function mapR?? x R? to R?. Since the codomain is not square, the result can not
be symmetric. In addition, when we consider the functiépand f,, we see that each
function is bilinear (quadratic), not convex, nor increasi We represent these properties

with the type

(L, (a,a,A), L,R)
, L

(L, (8,b,B), L,R)
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The variablew, a, A, 8, b, andB are defined by

0 0O 0 0 0 Y2 O
0 0O 0 0 0 O 0
0 0O 0 0 0O O 172
CY:O a= A:
0 0O 0 0 0 O 0
0 12 0 0 O O 0
0 0O 0 12 0 O 0
0 0O 0 O O 0 0
0 O 0 0 0 Y2 O
0 0O 0 O O 0 0
B=0 b= B =
0 0O 0 O O 0 172
0 0 172 0 O 0 0
0 O 0 0 vY2 O 0

Certainly, these types seem large and unwieldy. Howevely tive an extraordinary
amount of information about the function in question. Weegive rules necessary to derive
the above type during the discussion of the type system.
The above types correspond to the terms
Mathematical Program & N::=min eover X st {e}!

Expressions e E:=A| x| f{e}!

A mathematical program is built from an expression, a lisvarfiables, and a list of ex-
pressions. Expressions can take several forms. The migtileah ranges over constants
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while x ranges over variables. The application rule allows us tedlnew model func-
tions from existing ones. Notice that we don’t explicithcinde many useful operations
such as subindexing or algebraic operations. Their funatity is subsumed by the ap-
plication rule. Also notice that this language does notudel definitions for user defined
bindings or functions. These can be accomplished througinaoeaTheir details are left as
an implementation detalil.

For example, using our grammar, we can represent the faillplimear program

min + {X,y} over x : R** y>: Rst > {+{x,y}, 1}

In the following discussion, we abbreviate this using theemeadable form

min X+yover X: R,y: Rstx+y>1

Nonetheless, we see that this grammar can be used to reppaegeny broad class of non-
linear programs.

At this point, we must address a confusion of terms. In thistext, we have two
different kinds of variables. In one sense, we have variablésepeesent abstract terms
in our language. For example, in the expressianl we add the variablg to the constant
1. In another sense, we have decision variables that desmuibsolution. For example, in
the codemin x+ 1 over x : R st {}, xis a decision variable. In the following discussion, we

refer to the first kind as a variable. We refer to the second &a decision variable.
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Similarly, we have two dferent kinds of functions. In one sense, we have functiorts tha
map values to values in our language. For examgite,{x, 1} represents the application of
the>g, function. In another sense, we have functions that arefiooitt decision variables.
For example, in the codmin x + 1 over x : R st {}, X+ 1 is a function built from a single
decision variable. In fact, evexrepresents a function, namety— x. In the following
discussion, we will refer to the first kind as a function. Wierdo the second kind as a

model function.
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Chapter 4

Type System

The type system serves two purposes. First, it insures thatgram is well formed.
For example, the statement1irue may be grammatically correct, but a good type checker
should raise an error since we can not add an integer to admofecond, it allows us to
constructively prove properties about a statement. Fomel& a type system can prove
that 1+ 1 is an integer. We use this idea to prove properties aboufuthetions in a

mathematical program such as whether a function is convex.

4.1 Preliminaries

Continuing our simple calculator example from above, wendefine following typing
rules
'rc:B (Boolean Constant)
'rc:Q (Rational Constant)

A

Ofiftnt) >0 F foftt) -t (Tre:t)

Application
' fle,e):t (App )
The first two rules state that the bindingslirprove that a constamtis either a boolean

or a rational. Of course, we assume that constants sutlueser falseare boolean and
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numbers are rational. The last rule states an implicatitie.cbnditions for this implication
reside on the top of the line while the result lies below. #ts$ that when the context
contains a function with a particular signature and the gpnts given two this function
match this signature, then we know the type of the resultpieation.

As an example, using the context defined during the gramnedinpnaries, we use the

application rule to show that 2 is rational

[+:{QQ »QI"++:{Q,Q}>Q I+1:Q Ir2:Q

'-r1+2:Q (Adg)

We combine these results to generate longer proofs. Formgam order to prove that

1+ 2+ 3isrational, we have the following proof

(Add)
0,+:{QQ >Q"r+:{QQ>Q Tr1l+2:Q T+3:Q

'-r1+2+3:Q

4.2 Formal Definition

The typing rules are described by
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Mathematical Program Trn

[Zre:(c,pmR) {[5ZFe: o)

Pro
I' - min e over X st {g}! (Prog)

Expressions

XrAlp (Index)
XA {(,A—-R) (Scalar Const)

XA {(/,A”—,—, ]R){JT‘”, J/} (Matrix Const)

2 x: 0" 2k x: (/,(0,ex11)), /0 (Scalar Var)

2, x: 0™ E X {{/, (0, eigy), o)){}‘”, 1} (Matrix Var)

2 X S™Y X {0, eij)s /,]R){}"“, } (Symmetric Var)

Cf: -t rfgn-t (Tre:t)m

Xr flefhot (App)

where we abbreviaté, p, m, R) for {(c, p, m, R)}!, 1}. In addition, we specify tha¥ = i

ij

whenA is symmetric andL when it is not. Also, we defing; j to be a vector of length

> 1 'k Wherer x ¢, denotes the size of each matrix in the con®xthis vector consists

of all zeros save a single 1 in th, i, j)th position where we define

k-1
ki, ) =i+ (= D+ Y rpCp
p=1
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We refer to this vector as thék, i, j)th canonical vector. As a final note, we see that the
typing rules for constants and indices are ambiguous. Tdes dot cause a problem since
the correct typing rule can always be determined from théecan

The typing rules of a mathematical program give insight itgéstructure. Initially, each
mathematical program depends solely on a set of predefimetidns whose type bindings
are found withinl". This context contains functions such as addition and sigximg. The
objective function and constraints are type checked in te (Prog). Here, we require
that objective be a model function and the constraints bé-tyeéd. The typing rules
for constants and variable lookups mirror those found witaimbda-calculus. However,
variable lookups appear slightly strange. In this caseh eaciable can be treated as a
function of itself with the appropriate properties. For exae, the above rules would prove

the following

;x:R>?y: Ry </, 0,0 ,/,]R>,i

In other wordsy is a function that is linear ixx andy.
The following Hasse diagrams detail the subtype relatigossfor convexity, mono-
tonicity, polynomality, and sets. In the diagram, elememtsthe top of the graph are

subtypes of those connected below.
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Convexity Monotonicity ~ Polynomality

/ - a
AR /N
— -~ /7 N (a,d)
N S AN |
1 1 (a,a, A
|
1
Domains Codomains
{0, 1}m™n (-1, 1™ {0,14-1,1}
~ | \/
Sn Z7m™n Z.
N/ |
]Rmxn ]R

Two composite typesc, p, m 0)", y}, are considered subtypes of each other when their

sizesmandn, are the same and each component is a subtype of the other.

4.3 Builtin Functions and Their Type

In the above typing rules, we utilize a contdxtwhich contains the type of builtin
functions. Notice, there was no introduction rule for thatextI', so all functions within
the context must be predefined. The following two sectionaibinese functions and their
types. In the first section, we address functions that aqueety scalar arguments. Then,

we generalize these ideas into functions that accept matyxments.

4.3.1 Scalar Functions

By scalar function, we mean a function where all model fuordiinput into the func-

tion must have a scalar codomain. We type these functiorndlas/é
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Partial Order Defined by the Nonnegative Orthant

The partial order defined by the nonnegative orthant has type

>r.: (G, p,MOY)E — ©

where there are no restrictions on the properties of thetiimc

Equality

Equality has the following type

= {{c,p,m O)}2 — ¢

Like the partial order defined by the nonnegative orthantdeenot restrict the kind of

functions used in equality constraints.

Addition

Addition between scalars has the following type,

+: {{c, p, m 0)}2 — (C, p, M, O)

where
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/[ &=/
— Cx=w—
~ C=—
1 otherwise
a1+ ay Pk = ak
(a1 + a2, a1 + @) P = (@, )k
(a1 + ag,ap + a3, At + Ay)  pi = (a, a A)
1 otherwise
- m=-

/S o=/
m=

N M=
1 otherwise
7 oc=17

R oo=R

Negation

The negation of a scalar has the following type

- {<C’ p, m, O>}& - <C, p’ m, 0>

where
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[/ CG=/
- C =~
c=
~ ¢ =—
1 otherwise
- Pr=a
o= (a1, —a) P = (@, @)1
(a1, —a1,-A1) p1=(a,a A)
1 otherwise
- my=-
Mg =N
m=
N M=/
1 otherwise
{-1L1} o, ={-11}
0=47272 0,=27
R 0,=R

Subtraction

The subtraction of one scalar from another has the followypg

—: {{c, p, M 0)}Z — (c, p, M, 0)
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The resulting type is identical to the type of the compositection f + (—g) wheref and

g are the two the arguments passed into negation.

Multiplication

Multiplication between two scalars has the following type

1 {(C, p,m O}z — (C, p, m, 0)

where
[ C=/Pp=a
Ci=—,P2=0a220
~ CL=—,p2=a2<0
p=(r,a,A),A>0
c=
Ci=—,P2=a2=>0
- Ci=—,P2=a2<0
p=(r,a,A),A<0
1 otherwise
102 P1 = a1, P2 = a2
(@12, 22) P1 = (@, @)1, P2 = @2
P=1 (102, a1z, Arary) Pr=(a,a,A)L P2 = @2
(102, @102 + 182, (18] + @8[)/2) P = (2, @)1, P2 = (@, )2
1 otherwise
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— mg=—
m=/,p2=a2>0
/
m =\,P2=0a2<0
m=
m =\,P2=0a2>0
N
m=/,p=a2<0
1 otherwise
{0,1} o«=1{0,1}
{_1’ 1} Ok = {_1’ 1}
o=
Z. o =7
R =R

Scalar multiplication is also commutative, i.ex*y = y s« X. Thus, we can type the

corresponding function in the same manner as above, buthéthrguments reversed.

Division

The division of one scalar by another has the following type

/ :{{c, p, M 0)}& — (c, p,m,0)

where
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/| G=/P2=a

Ci=—,P2=a2=>0
~ Ci=—,p2=a2<0
p=(r,aA),A>0
CL=—,pP2=a22>0

~ YC=—,Pp=a2<0

p=(r,aA),A<0

1 otherwise

a1/ az PL= a1, P2 = a2
(a1/az, a1/ a@2) Pr= (@, @)1, P2 = @2

(1/az,a1/az, Ar/az) p1=(a,a,A), P2 =z

1 otherwise
- M=—pP=a
m=/.,pPp=a220
/
M =N\,P2=0a2<0
m=N\,P2=a2>0
N
m=,p=a2<0

1 otherwise

{_1, 1} Ok = {_1, 1}
Z 01 = Z, 02 = {_la l}
R o =R
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Absolute Value

The absolute value of a scalar has the following type

| : | : {<C, P, m0>}& - <C’ p, m, 0>

where

/" P=a

1 otherwise

laal P =1

1 otherwise

- m=-

1 otherwise

{0,1} 0, ={0,1}
{-1L1} oa={-11
Z o=7

R 0.=R

Binary Maximum

We type the maximum between two scalars as follows

max: {(c, p, m, 0)}2 — (C, p, M, 0)
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where

/ Pk =ax

C={ — g =v

1 otherwise
max@a, @2) Pk = ek
1 otherwise
- Mm=-
/M=

N M=

1 otherwise

{0,1} o=1{01}
{-1L1} ow={-11
Z o =7

R otherwise

Binary Minimum

The binary minimum between two scalars types as

min: {{c, p,m, 0)}2 — (c, p, M, 0)

where
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/I Pk =ax

C={ ~ g =—

1 otherwise
min(as, @2) Py = ax
1 otherwise
- m=-

/S M=/

N M=

1 otherwise
{0,1} ok =1{0,1}
{-1L1} o={-11}
Z =7

R otherwise

Exponentiation

The exponentiation of one scalar by another has type

71 {{c, p,m, 0)}2 — (c, p, M, O)

where
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Pk = ax

/ p2=0

Ct=/p2=1
C1=/,P2=aza,mod2=0,a, >1
~ YCG=—p=1

CL=—,P1=(0,0A), p2=1/2

— Cl:f\apzzl

1 otherwise

ay? PL= a1, P2 = a2
1 P2 = 0
P1 po=1

(03, 20181, @) pr = (e1,81), P2 =2

1 otherwise

— m=-

/'y =/,p2=aza, mod2=1a, >0
N Mg =N\, P2 = az,ap,mod 2=1,a,>0
1 otherwise

{0,1} o=1{01}

{-1L1} o={-11)

Z Ok =2,p2=aza,>0

R otherwise
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4.3.2 Matrix Functions

By matrix function, we mean a function that can accept anytrarty model function
as an input regardless if that function has a scalar or mebaomain. These functions are

typed as follows.
Partial Order Defined by the Nonnegative Orthant
The partial order defined by the nonnegative orthant has type

2
ZIR+: {{<C’ p, m, O>irjnn, y}}k - O

where we require thaty = m, andn; = n,.
Partial Order Defined by the Second Order Cone
The partial order defined by the second order cone has type

2
>q: {{(C, p,m o), y}}k - O

where we require thaty = m,, n; = n,, and that eithem, = 1 orn; = 1.
Partial Order Defined by the Cone of Positive Semidefinite Matices

The partial order defined by the cone of positive semidefmigrices has type

2
>s, {(c. p. oYyl — o
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where we require thaty = mp, = n; = n; andy; =y, = i.
Equality

Equality as the following type

= {(c. pmoyl) - o

where we require thaty = m, andn; = n,.

Addition

Addition between matrices has the following type,

+{c pmolny) - (e p.moy"y)

wherem = my = mp andn = n; = n,. Let f andg be the two arguments given to
addition. Then, we type each () element of the codomain dgs + g;;. Additionally, when

Yi=Y=%Yy=*%.

Negation

The negation of a matrix has the following type
1
- {(c.p.moy"yi}, - (. p.m o).y}

i]
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wherem = m; andn = n;. Whenf is the argument passed into negation, we type each
(i, J) pointwise function as-f;;. If y; = &, we also specify that = 1.
Subtraction

The subtraction of one matrix from another has the folloviyye

2
- {ie. p.m oy yif — ((c, p,m 0" v
wherem = my = mp andn = n; = n,. Let the two arguments given to subtraction be

andg. Then, we type each,(j) element of the codomain &g — g;;. Additionally, when

Yi=Y2=%Yy=*%

Multiplication by a Scalar

The multiplication of a matrix by a scalar has the followiggé

2

« (e, p.mo)", yi} — {<c. p,m o)y}
wherem = my, n = n, and we require that, = n, = 1. Let f andg be the two arguments.
Then, we type thei(j)th pointwise function asj; = g. Wheny,; = £, we also specify that

y = %. Finally, as multiplication by a scalar is commutative, wpd the corresponding

function in the same manner as above with the argumentsseer
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Division by a Scalar

The division of a matrix by a scalar has the following type

mn

[ {ie p.moy ) — (e p.moymy)

wherem = my, n = ng, and we require that, = n, = 1. Whenf andg are our two
arguments, we type the, {)th pointwise function ad;;/g. As with multiplication, when
y1 = ¥, we specify thay = &.

Submatrixing

The submatrixing of a matrix has the following type

ol p oo™, y}}i Al = (e, p.m o)y}

where we require thaty > n3 > n; andny > n4 > .. When these conditions are satisfied,
we specify tham = n, — n; + 1 andn = n4 — n3 + 1. Let the first argument bé. Then,
the type of thei( j)th element in the result is that df..,,)(j+,,). Further, we state thgt= i

wheny; = andn; = 13,172 = na.
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Subindexing

The subindexing of a matrix has the following type

e pmoomylL . i — (e p.m. oy

where the type is nearly identical to the submatrixing fiorctwith the matrix indices

(71 : m1,m2 - m2). The only diference is that since the result is a scalar, it must be synanetr

Matrix Multiplication

The multiplication of two matrices has the following type
2
« (e, p.moy", vl — {<c. p,m o)" v}

where we stipulate thah = my, n = ny, andn; = m,. Before we define the possible type

combinations, let us recall the definition of matrix muligaition

Now, recall that we are considering matrix valued functiofisus, we have that

M) = D f(¥)gki(¥)
k=1
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Each functionfy and gy; is scalar valued. Thus, we can determine the typé;oby

combining the typing rules for addition, scalar multiptica, and subindexing. Finally,

since we can not guarantee symmeyry, L.

Absolute Value

The pointwise application of absolute value has the folfaytiype

mn}

1+ {ie p.m o™ yi}, — (e p.m o)™y

wherem = my andn = n,. Let f be the argument given. Then, we can type each pointwise

function of the absolute value function bif;|. Moreovery = y;.

Elementwise Maximum

The elementwise maximum of a matrix has the following type
1
max: {{(c, p,m 0)", y}}, — (c, p,m o)

where each type combination is determined by recursivglyyam the binary maximum
between two scalars in the following manner. lfdte the argument passed im@x Then,

we determine the type of max using the following relation

maxf)

= maxX fi;, maxfa, ..., maxfo, maxfi,...,maXfm1n, fmn).-.)...)...)..0)
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Whenm, = n; = 1, the type oimaxis that of its argument

Elementwise Minimum

The elementwise minimum of a matrix has the following type

min : {{(c, p,m, o);}", y}}i — (C, p,m, 0)

where the type combinations are defined similarly to elemisetmaximum. Wherf is

the argument passed iman, we determine the type aofinwith the following

min(f)

= min(fyy, Min(faq, . .., MiN(fpg, Min(fy, ..., MiN(fo1n, fon) -22)-.0)..0) . 00)

Whenm, = n; = 1, the type oiminis the same as its argument.

Summation

The sum of all elements in a matrix has type

1
sum: {{(c, p,m 0", y}} — (c, p,m o)

where each type combination is defined using a method sitailalementwise min and

max. Let the argument handed to sum be denotefl Gyhen, we define the type of sum as

sun(f) = fou+ for+-- -+ fp+ fo+ -+ T + T
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In the case that, = n; = 1, the type ofsumcoincides withf.

P-Norms

All p-norms withp > 1 have the following type

111y 2 {(¢c. p.m O™y}, — (c. p.m. o)

where
/| P=a
C=9 — cy =/foralli, |
1 otherwise
IAllp  p1 = ayj for alli, j andAjj = ay;
p =
1 otherwise
m=
1 otherwise
o=R
Transpose

The transpose of a matrix has the following type

T. mn 1 mn
T e pmof i} — (e p.m o))
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wherem = n; andn = my. Then, the type of thei(j)th element in the result is equal

to the type of the | i)th element of the argument. Further, as this operation is sytjgme

preservingy = ;.
Trace

The trace of a matrix has type

tr - {{(c. p.m o)" y}}, — (. p.m o)

where we require thaty, = n;. Recall, the trace of a matrix is defined as

tr(X) = Zn] Xi
=)

Thus, we determine the type of trace by combining the typulgsrfor subindexing and

addition.

Horizontal Concatenation

The horizontal concatenation of two matrices has type

2
k

[1: {ie. p.moyyif, = (e, p.m )" y)

where we stipulate thaity = m,. When we satisfy this condition, we specify timat= m

andn = n; + n,. When we denote our two arguments byndg respectively, we type the
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(i, j)th pointwise function ad;; for j < n; andg; j_n,, otherwise. We always specify that
y=L1.
Vertical Concatenation

Similar to horizontal concatenation, the vertical connat®n of two matrices has type

mn

. : {{(C, p,m, 0>ij ,y}}i — {{c, p,m, 0>irjnn’ y}

where we require that; = n,. Should we satisfy this condition, we define that m; +m,
andn = n;. When we denote our two argumentsbgndg respectively, we type thé, (j)th
pointwise function ad;; for i < my andg;_, j, otherwise. We always note that= L.

Symmetric Concatenation

Symmetric concatenation allows us to combine matricesedrnburing symmetry. This

function has type

’ 3
= {ic. p.m o)™ v}, — ((c, p.m o)™y
where we must guarantee that = m,, n, = n3, andy; = y3 = . Once we meet these

conditions, we specify thah = my + mg andn = n; + n,. Let the three arguments be

denoted byf, g, andh and denote the result sy We denote the type of thg ()th element
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of the result as

fi; 1<i<m,l<j<m
J
Oij-n 1<i<m,n+1<j<ni+n

Oji-my, M+ 1<i<m+mgl<j<m

hi—ml,j—nl m1+1SiSm1+rn3,n1+1San1+n2

Finally, we specify thay = #.

Maximum Eigenvalue

The maximum eigenvalue function has the following type

1
Amax: {{¢C, p,m 0", i} — (¢, p,m 0)

where

/| P=a

C=3 — cy; =/foralli, |
1 otherwise

/lmax(A) P1 = g foralli, j andA”- = i

p =

1 otherwise
m=

1 otherwise
o=R
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We require thatn, = n; andy; = .

Minimum Eigenvalue

We type the minimum eigenvalue function in a manner simdahe maximum

1
Amin: {1(C, p, M O)" Y}, — (¢, p,m0)

where

/ pP=a

C=9 ~ cy; =/foralli, ]
1 otherwise

Amin(A)  p1 = ayj foralli, j andAj = ay;

p =

1 otherwise
m=

1 otherwise
o=R

Additionally, we require thath, = n; andy; = f.
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Chapter 5

Semantics

Up until this point, we have defined a series of rules thatigp#we form a mathemat-
ical program. This form by itself has no inherent meaningotimer words, a program is
simply text. We have defined rules to insure this text is i@llned. The semantics of
a language define a series of functions that map text to matieahmeaning. Once we
define our semantics, we can prove that our above typing anesorrect. For example,
we can prove that when an expression has typéhen this expression represents a convex

function.

5.1 Preliminaries

In the following presentation we introduce key conceptsduséhin the formal se-
mantics. This includes a brief description of denotati&hantics. It also includes the
definitions and basic results about convexity, polynomgadibhd monotonicity. During their
discussion, we pay special attention to how we apply theseegis to functions of matri-
ces. Next, we will describe the relations that define our wamgs. This includes how a

pointed convex cone describes a partial order which is aktaticone programming.
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5.1.1 Denotational Semantics

The core idea behind denotational semantics is the definitia function that maps
grammar to mathematical meaning. There are two contrasipgoaches that we may
choose. In the Curry-style approach, we assign a meaningeiy éerm regardless of
whether it is well-typed. After we define the meaning of eastmt, we discard ill-typed
terms. In the Church-style approach, we reverse the orddrese steps. Thus, we type
check each term and give meaning only to the remaining wp#d terms. In the following
presentation, we employ the Church-style of semantics afidelmeaning only on well-
typed terms.

Continuing our calculator example, we define two sets. FiestT = {Q, B} be the
set of that contains two elements, the set of rationals aedéh of booleans. Second,
we define the set of all possible binary functions that ojgeoatrationals and booleans as

F = {[ty X t — t3]}yer. This allows us to define the semantics of our calculator as

Types
Rl =Q

[B] =B

Function Types L1 (T.T} > T) > F|

[{ts, t2} — th=[[ta] X [t21 — [t1]

Expressions [[1:GXEXT = Upert]

[Trc:t]=c

[T+ flen, e} it =[TFf:{te,to} > t{ITCFe :t], [T Fe:t])
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Functions [[1:GXEX({T.T} > T) = Upeef]

[T++:{QQ} —» Ql =Xy X+y
[TF-{QQ - Ql=Xxym x-y
[TF+:{QQ} = QI =Xy Xy
[TF/{Q,Q = Ql =Xy Xy

[T +and: {B,B} - B] = x,y — xandy

[T For:{B,B} - B] =Xy Xory

As an example, we define the meaning of 2 + 3 as

MF1+2+43:Q1=[T++:QxQ—-QI{[l'+1+2:Q],[T'+3:Q[
=Xy x+y)([I't+:QxQ - QUII+1:QI,IT'+2:Ql},3)
=Xy x+y)((xy - x+y)1,2),3)
=Xy xX+y)(1+23)
= (XY~ x+Y)@3.3)
=3+3

=6

Thus, we have mapped the meaning of a textual prograi?+ 3, to its actual mathematical

meaning 6.
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5.1.2 Soundness and Completeness

A technical result called soundness gives us confidenceantbatorrectly designed a
language. Recall, using denotational semantics, the mgafievery type is a set and the
meaning of every well-typed expression is a mathematigalobbSoundness states that the
meaning of every well-typed expression lies within the meguof its type. In other words,
it states thafl' + e : t] € [t]. Once we prove this result, we know that if our typing rules
prove that an expression has type, fQythen the meaning of this expression must be a
rational number.

We prove the soundness of our calculator with the followirguenent. Assume that
C represents a rational constant. Then, our typing rulesugelhatl” + ¢ : Q. Thus,
we must show thafl' + c: Q] € [Q]. By definition, [T+ c: Q] = cand[Q] = Q.
Since we assumed thate Q, our definition is sound. Similarly, assume tltatepre-
sents a boolean constant. Our typing rules stipulatelthac : B. Therefore, we must
show that[T"' + c: B] € [B]. Since we defined thdil' - c: B] = ¢ € B = [B], our
definition is sound. Finally, we must consider function aggtions. Recall, we define
that[T' + f{e, e} :t] = [TF f:{t, o} > tJ{ITFe :t],[T+e:t2]l}. By induction,
we know that[I' + e; : t1] € [t1]] and[[T + & : to]] € [t2]. Therefore, we must show that
the definition of each function definition withinis sound.

We begin with addition where we define tHdt + + : {Q,Q} —» Q] = X,y — X+V.
Addition maps two rationals to a rational. By induction, weolw both arguments te

must be rational. Therefore, the result of application ningstational and the meaning is
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sound. This same argument applies-tox, and/. Thus, let us consider the logical and
between two booleans. We define thBEt- and: {B, B} — B] = X,y — X andy. Logical
and maps two booleans to another boolean. By induction, wes kroth arguments tand
are boolean. Hence, the result of application must be bo@ed the meaning is sound.
This same argument applies to the functayn

We have shown that the meaning of all expressions in theleateus sound. Therefore,
our definition of the calculator language is sound.

A related, but less important, result is completeness. Jetmpess considers whether
a language can represent an arbitrary mathematical objéstdomain. In other words, it
considers whether for arye [[t] there exist® such thaf[I" + e : t]] = c. This result gives
us an idea of the expressiveness of our language.

The definition of our calculator is trivially complete. Givanyc € Q, we define that
[T +c: Q] = c. Similarly, for anyc € B, we define thafl" + c: B] = c. Therefore, the
language is complete. Unfortunately, this by itself doegnee us much information about
the expressiveness of our language. We learn far more iattwmabout the expressiveness
by considering the completeness of our functions. Notiag[fth, | x[to] — [t]] represents
a set that contains an uncountably infinite number of funstiorhe calculator may only
express six functions in this set; —, «, /, and, andor. Therefore, the true expressiveness

of our calculator is restricted by the number of functioret tive define.
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5.1.3 Convexity

Intuitively, we view convex objects as items that are boveldd. The formal definition
mirrors this idea closely. A s& is convex when for any,y € S andA € [0, 1] we have
that

AX+(1-A)yeS

A function f : S — R is convex when

FAX+ (1= A)y) < A (X) + (L - ) F(y)

Similarly, a function is concave when we reverse the abogquality. A function is fine
when it is both convex and concave. Notice that all functitadksinto four categories:
convex, concave fine, or neither.

We must make one special note. Recall that the domain of eawidn in our lan-
guage is defined by the decision variables. This includessseth as integers which are
nonconvex. Properly, convexity does not make sense on fetseHowever, since solvers
typically handle integer constraints specially, we asstiméthe domain of each variable

is real, and hence convex.

5.1.4 Polynomality

A functionis a polynomial when it can be represented exdmtlyome Taylor expansion

of a finite order. When a mathematical program is compriséideiyof linear or quadratic
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functions, a solver may be able to use specialized algosttorsolve the problem. A
function is a quadratic polynomial when it is defined exatiyyits second order Taylor

series. Thus, a functioh: R" — R is quadratic if we can represent it exactly ¢pyhere

q(x) = f(0) + (VT(0), x) + %(sz(O)x, X)

=a+(a X) + (AX X)

wherea € R, a € R", andA = AT € R™". Analogously, a function is a linear polynomial
when it is defined exactly by its first order Taylor series. dmdiscussion, we only describe
guadratic polynomials in detail since linear and constayrmomials are subsumed by

guadratics.
We generalize this concept to matrices in a natural way usingprs. Given a function

f : R™" — R, the second order Taylor approximation is given by

609 = £(0)+ (VH(0), % + (V1 (0)9.

= a +{a,Xx) + (A(X), X)
wherea € R, a € R™", andA : R™" — R™" js a linear operator where

[AXTij = (A %
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andA;; e R™". Thus, we can represeAtas a tensor where

1 of
A = Eam,-axk.

Unfortunately, this isn’t quite enough. We would like to ogaize bilinear functions
as quadratic. For example, the constraigt= c defines a system of bilinear, or quadratic
constraints. Thus, each quadratic must be defined on allidecrariables, not just a single
variable. Hence, we are concerned with functions wifereR'>“**nx4 — R, As the
domain off is awkward, we must be careful with how we represent elememisdomain.

There are several ways to visualize elemenR'i{%* "% One possible approach is
to flatten the elements into a vector. Alternatively, we ceamelements as a sequence of
sizer,x ¢, matrices. In the first case, objects are easy to manipulaté)éy lose structure.
In the second, elements possess a natural structure, butistedefine operations such as
multiplication and factorization. Our presentation witimbine both approaches. Since we
need to manipulate the Hessian during certain transfoomsitive represent the déieients
in the Taylor series as vectors and matrices. In order taepreshe structure of we will

continue to view it as a sequence of matrices, but define theecsion operatovecas

vedx) = (P vedx)
k=1

wherevedx,) represents the normal vectorization of the maxgixAs a result, we see that

the i, j)th element ofx corresponds to thek, i, j)th element ofvedX).
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Using this notation, the second order Taylor approximaigagiven by

a(x) = f(0) + (Vf(0), vedx)) + %(VZ f(0)vedx), vedXx))

a + (a,vedXx)) + (AvegXx), veqx))

where

of
B(kij) = %
d*f
Akiiy@ip = 0% XaT

Since quadratic functions possess a constant Hessian,dbead these partial derivatives
is inconsequential. Thug,is symmetric.

For example, considefr : R¥? x R>! — R wheref(z,2) = 212 +

1 1] %. This

function is quadratic iz where

0 0O 0 12 O
0 O 0 0 Y52
f(2 = < ,vec(z)> + < veq2), vec(z)>
1 /2 0 0 O
1 0O 172 0 O

As a final note, similar to convexity, we have trouble definpajynomials on integer

domains. Thus, we assume that each variable is real andaigimsrequirement.
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5.1.5 Monotonicity

Monotonicity describes whether a function is either ineme@ or decreasing. This
property is important when determining if the compositiétweo convex functions is con-
vex. Formally, a functiorf : R — R is monotonically increasing whef(x) > f(y) for
x >y. Similarly, a function a monotonically decreasing when eserse the first inequality
above. Notice that all functions fall into four categoriexreasing, decreasing, neither, or
both.

This concept generalizes to the Cartesian product of mdtirains with a suitable
partial order. LetV; be some matrix domain such &™" or ZP*9. Given two points
XY € [Trs Vi, X =g, Y When Xdij > Y for eachk, i, andj. Thus, we say that a function

f : [1k.1 Vi — Vis monotonically increasing whef(x) > f(y) for x >g. .

5.1.6 Relations

A binary relationR between two setd andB is a subset oA x B. Fora € Aandb € B,
we say thaaRbwhen @,b) € R. We are only concerned with relations commonly used
in optimization. Thus, we restrict our attention to equalgointwise nonnegativity, and
the partial orders defined by the second-order cone and tie aopositive semidefinite
matrices.

Since we are operating on matrices, we define equality andegativity pointwise.
Thus, forA,B € C™", A = BwhenAj; = Bj; for1 <i < mand 1< j < n. Similarly, for

A, Be R™", A>g, BwhenA; > Bjjforall1<i<mandl<j<n.
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Partial orders defined by pointed convex cones require nasee &ecall, a partial order

is a binary relation that satisfies four properties

1. reflexivity:a > a

2. antisymmetry: if botta > b andb > a, thena=Db

3. transitivity: if botha > b andb > c, thena > c

4. compatibility with linear operations

(&) homogeneity: i > band1 € R > 0, thenda > Ab
(b) additivity: if botha > bandc > d, thena+c> b+ d
Notice that this diers from an ordering since there may be some elements thaneot

compare. For example, our definition of pointwise nonneggtdefines a partial order.

Thus, inR? we can see that

and

Y
Y

But, we also see that

b and b

Let us define a binary relations where

a>kbea-b>0a-bekK
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whereK is a pointed convex cone. Recall, all pointed convex conest rsatisfy three

properties
1. Kis nonempty and closed under additianbe K = a+ b e K
2. Kisaconicsetae K,1>0= laeK
3. Kispointedlae Kand—-ace K= a=0

This leads us to the following lemma

Lemma 1. The binary relation=« defines a partial order

Proof. We must verify the four properties of partial orders

1. reflexivity: SinceK is a cone, for any € K, 1a € K for 4 > 0. Leta = 0. Thus, we

seethatE K = a-acK = a>¢ a

2. antisymmetry: Let >¢ b andb >¢ a. This implies thaa— b € K andb - a =

—(a—Db) € K. But sinceK is pointed, this impliesth&-b=0= a=Dh.

3. transitivity: Leta > b andb > c. Then we have that— b € K andb - c € K. But,
sinceK is nonempty and closed under addition, we must have ghabj + (b—c) =

a-ceK=a>c
4. compatibility with linear operations

(&) homogeneity: Lea > banda > 0. SinceK is a conic set and — b € K, we

see that(a—b) e K= la >k Ab
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(b) additivity: Leta > b andc > d. SinceK is nonempty and closed under
addition,a—-b e K, andc—d € K, we find that&—b)+(c—d) =a+c-b-d e

K—a+c-b-d>x 0= a+c>b+d

Three useful pointed convex cones include the nonnegatiharmt, the second order
cone, and the cone of positive semidefinite matrices. Thaegative orthanR” is defined
as the set

R" = {xeR": x > 0}

The second order co@" is the set defined by

Q”:{xe]R”:xlz inz}

i=2

Finally, the cone of positive semidefinite matrices is thededined by
81 ={XeR™ :X=X"vdeR"d"Xd> 0]

We prove that each of these is a pointed convex cone in thewfwify lemma

Lemma 2. The nonnegative orthant, second order cone, and the conestiye semidefi-

nite matrices are all pointed convex cones.

Proof. We begin with the nonnegative orthant. bey € R". We must verify three prop-
erties. First, lez = x+y. We see that, > 0 for eachi sincex; > 0,y; > 0, andz = X +V,.
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Thus,z € R and we have shown th&? is closed under addition. Second, ket 0 and
z = AX. We see that; = A% > 0 since bothx; > 0 andA > 0. Thus,z € R} and we have
shown thaiR" is a cone. Finally, assume thak € R". Then for each, x > 0 andx; < 0.
Thus,x = 0 and we have thak" is pointed. ThereforeR" is a pointed convex cone.

Next, we consider the second order cone. x,gte Q" where

|
<|

First, letz= x+y. Then, we have that

&
+
S
O

x|
+
<|
N|

Thus, we must verify thaty > ||Z]],. Sincexg > ||X]|> andyg > |lyll» we have that

Zo = %o+ Yo 2 [IXll2 + IIYil2 > lIX+ Yll> = |1l

from the triangle inequality. Thug € Q" and we have shown th&" is closed under

addition. Second, let > 0 andz = Ax. Sinced > 0 andx € Q",

Zo = A% = A2 = [|AX|2 = [1Zl2

Thus,z € Q" and we have shown thal is a cone. Finally, assume thax € Q". Then, we
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have that

—X%o > || = X2 = lIXl2

Thus, we have that

IX2 < %o < —|IXl2

Since||x]| > 0, this implies thak = 0. Thus, Oe Q" and we have shown th&" is pointed.
Therefore@" is a pointed convex cone.
Finally, we consider the cone of positive semidefinite neaBi LetX,Y € S". First, let

Z = X+ Y. Then for anyd € R", we have that

d'zd=d"(X+Y)d=d"Xd+d'Yd>0

since bothX, Y € S". Thus, we have shown that! is closed under addition. Second, let

A > 0andZ = AX. Then for anyd € R" we have that

d"zd=d"(AX)d = Ad"Xd > 0

since bot > 0 andX € 8. Thus, we have shown that' is a cone. Finally, assume that
—X € S". Then for anyd € R", we have that"Xd > 0 andd™Xd < 0. Thus,X = 0 and

we have shown tha8" is pointed. Therefore§! is a pointed convex cone. O

Since each of these cones defines a partial order, we wilhgslowing convention.

Whenx € R, we denotex =g, 0. Notice that this is a special case of pointwise inequality
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defined above. Second, where Q", we denotex >4 0. Finally, whenx € 8", we denote
X >s, 0. In each case, ¥x > 0 then we state that< 0.

Practically, we consider these partial orders for two raasdéirst, there exists a great
variety of problems that can be modeled using these partildrs. Second, we carttie
ciently solve problems that contain these inequalitiet wiimal-dual interior point meth-

ods.

5.1.7 Matrix Types

One central design fliculty stems from the ability to manipulate and analyze matri
valued functions. Some properties such as convexity anghpalality only make sense
with scalar valued functions. Other properties such as sgtrynare only useful when
considering matrix valued functions.

In order to understand matrix valued functions, let us atgrsan example. Lef :
R™"x R™! — R™ wheref(X,y) = Xyand letC ¢ R™! denote a constant matrix. Then,
the functionf represents aystemof quadratic functions and the statemdiik,y) = C
delineates aystenof quadratic equations. This idea generalizes other dasseinctions
and equations.

Thus, in one sense, we view matrix valued functions as a systefunctions. This
allows us to consider the convexity, polynomality, and ntoneity of each function in
the system. In another sense, we view matrix valued fungtaansimply a function with
a matrix domain. This allows us to consider whether elememihé range is symmetric.

It also allows us to define constraints based on partial erdech as second-order cone
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constraints and semidefinite constraints.

In our definition of types, we specify that model functionsdype

{cc.p.m o).y}

This tells us that we have a matrix valued function where

fu(x)  fa(}) ... fin(X)

fa1()  f22(%) ... fan(X)
f(x) =

(0 fro(d . fnl9)]

Each individual functionf;; is scalar valued and it possesses the properties defineaby th

tuple(c, p, m, 0);;. The propertyy tells us if the resulting matrix is symmetric.

5.2 Formal Definition

The grammar and type-system give structure to a languagethém words, they ensure
that terms within the language are well-formed. Howeveeséhterms are simply text;
they do not have meaning. Denotational semantics assigss fhieces of text a precise,
unambiguous mathematical meaning. Once we know the meahihgse terms, we can
then prove results about our language.

The discussion of the semantics falls into two parts. In tret part, we will assign
a formal meaning to each type of the language. This will dedim®llection of sets. For
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example][—] defines the set of all convex functions. In the second partyviNessign a
formal meaning to each well-typed term. In both of these £ds§ denotes the semantic
function that assigns meaning to terms.

In the following discussion, let the set of all possible cadins for scalar valued func-
tions be defined as

O ={R,Z,{0,1},{-1,1}}

This allows us to denote the set of all possible domains ot variable to be
D= {omxn, Sn}m,ne]N,on

Since the domain of each function in an optimization probigefined by the combined

domains of all decision variables, we define the set of alsjds function domains as

n
i=1 neN,d;eD

Thus, the set of all possible systems of model functionsliseigted by

i=1 j=1

m n
M= {1—[ 1—[[5 - Oij]}
i,jeN,0jj€0,5€S

In a similar manner, we recall that any expression is eithmodel function, a natural, or a

74



constraint. Hence, the set of all possible meanings foetkgpressions is given by

T = {M}mem U {7} nen U {0} ses acs

The set of all functions that map an arbitrary number of elesiérom T into another

n
F= {[ﬂ t — t]}
i=1 neN,tteT

The meaning of the types is defined as follows

element inT is given by

Convexity [I-1: C = {[s — OJJoes ses

[/I={f €[s > R]: VA €[0,1], f(Ax+ (1 = 2)y) = Af(X) + (L — D) F(Y)}ses

[—1={f €e[s—> R]:V2e[0,1], f(AX+ (1 - 2)y) <AF(X) + (1 — )T (Y)}ses

[~]={f €e[s— R]:VAae[0,1], f(AX+ (1 - )y) = AF(X) + (L — ) F(Y)}ses

[[J-]]:{f € [S - 0] }on,seS

Polynomality [-1:P—{[s— o]}oesses

[al={f € [s = R] : f(X) = a}ses

[(e, @)]={f € [s > R] : f(X) = @ + (&, veqX))}ses

[(,a, A)J={f € [s = R]: f(X) = a + (a,vedX)) + (Ave¢Xx), veqX))}ses

[[J-]]:{f € [S - 0] }on,seS

Monotonicity [-1: M — {[s — 0O]}oes ses
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[-1=(f € [s = R]: ¥x =Y, f(X) = f(Y)lses

[71={f €[s = R]: ¥x>y, f(X) > f(y)}ses

INI=(f €[s = R]: xzy, f(X) < f(Y)}ses

[[J-]]:{f € [S - 0] }on,seS

Codomain

[R] = R
[C] = C

[z] =z

[0, 131 = {0, 1}
[{-1,11={-11}

Symmetry

LEl=(f e m: £() = f(X)" Jmem
[[J-]]:{f € m}meM

Types

[{ce. p.m oy y]]

:{f e[s>R™n[y]: fije I[cij]] N I[pij]] N [[mj]] N {g € [s — I[oij]”}}

[]=tm
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[©ll={xe€ X : X C S}ees

Function Types L1:(TH —->T)—>F

[ - tHiUl [t — [[t]]]

Domain

[0™"] = {lo]™ " }mnen
[S™ = {S"nen

Decision Variable Context [1:S—S

[t : di}inzl]]:ili [d:]

As expected, the types associated with convexity, polydigygnanonotonicity, and sym-
metry all map to a set of functions. Since we also track thatpese codomain of each
function, the meaning of each codomain type is a set of nusnli&smbining these types,
each expression must either be a model function, a naturabey or a set of feasible
points. The remaining definitions characterize the meaofregach context.

The precise meaning of each remaining term depends on &s fyus, the remaining
semantics are defined on typing judgments. The meaning £¢ theexpressions is defined

inductively as

Mathematical Program [1:GxN—R

[[F F min e over X st {e}i”]]
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= min [[;2+e: (¢ p.mR)] ()

where A = [X]

B:ﬁ[[F;ZI—QZO]]
i=1

Expressions [[1:GXSXEXT = Usrt|

[T+ A:p]=A
[CEZFA:(LA-R)=xe[Z] — A

[Cz e A G AL =R Y|=xe 2]~ A

[[F; {x:di X (0, €11 /,0>]I=X € [[{X: d}ﬂ]l = X

[ x i b s {0 0. @) 22 O L =x € [ ix: i = %
[ txz dig e s {4 (0 @) AR |=x e [ xR = %,

[[r; Sk flgn: t]]:|[r FEgn - t]] (IT;S+e: tpm

Scalar Functions [1:GXEx({TI' > T) = Useef

[T F2r.: (e p.mo)i2 - of=f.g - {x: F(X) = g(¥))

[[F F=: {(C, p,m, 0)}} — <>]]=f, g {x: f(x) =g(x)}

[TF+: e pmoy2 - . pmoy=f.gm (xm f(x) +9(x)
[F = ke pmoi = . pmoyf=f > (x> ~F(x)

[TF-: e pmoy2 - . pmoy=f.gm (xm f(x) - g(x)
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[T+ ke p.mo)2 — ¢ pmoy|=f. g~ (x = F(xg(x)

[T/ ke pmo; = . pmoyf=f.gm (x+ f(9/9(x)

[[F Fl-1: e p,mooyit — (c, p,m,0>]]=f = (X [f(X))

[T+ max: (e, p.m o))2 — (. p,m o) |=f,g ~ (x > max(f(x), g(x)))
[+ min: e p.mo)2 > (¢, p.m o)|=f. g = (x = min(f(x), g(x)))

[TF e p.mo)2 - (c.p.mo)=f.g- (x— f(x)9¥)

Matrix Functions [1:GXEx({TIN > T) = Useef

T F>R, {{(c, p,m, o)™, y}}i — <>]]zf, g {x: f(X) =g, 9(¥)}

T2 {tc, p.moy™, y}}i - <>]l=f, g = {x: f(X) zq 9(¥)}

T F>s, {{(c, p,m, o)™, y}}i - o]l:f, g {x: f(X) =s, 9(X)}

= {t<c. p.m oy, y}}2 - o]]:f,g = {x () = 903}

k

e+ e pmomyf - e p.momyl=f.g e (x- £ +g()
v - {{<c, p,m o)™, y}}i — {(c, pm o)™, y}- =f > (X -f(X)
- {ic pmommyf - e p.mommyl=f.gm (xm £ - g)

et fie pmoy) - (e p.momyf=f.g - (x> f(x)g(0)

T/ (e pmomy) - (e p.momy=f.gm (xm (/)

I k

[ 1
Tk {ic, p.moy™ i} . ()¢ — ((c, p,m o)™ y}]]= f.ab.c.de fapca(¥)
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r 1
T+ e pmoy vl

2 = @ pmo)=f.abi fu(

[ 1
112 {i<e. p.m o)™ i}

 — (& p.m o)™, y}]]:f — (X = Y) whereY;; = |f;;(X)]

T+ max: {{(c, p.m o)™, y}}i — (C, p,m, of=f - (X > rTil?Xfij(X))

Tk min: {{(c, p,m o)™, y}}i — (C,p,m, 0>_ =f - (X = min fij(X))
[ ] j

—1" F sum: {{(c, p, M, o){?”, y}}i — (C, p, m, o>_ =f - (x =D fi,-(x))
L ] i,j
Tr il e p.moym ) = . p.moy|=f - (x> 11 (¥)l.)

T 0D e p.moy™y), = (e p.moy|=f > (x> 1)

Tr il (e pmo™yl) = e p.moy|=f o (x> IT(Xl)
[ 1

LT {e pmoynyl, — (e p.moym y}]]=f = (x> X')
—F Ftr: {{(c, p, m, o)irjf‘”, y}}i — (C, p,m, 0>]l:f - (X - tr(X))

[ e pmonylf, - (e pmoy|=f.g = (o [109 909D

' 2 f(¥)
Cr| | {ic p.moymyl} — (e pmoyMy=f,g—|x—
' 9(x)
o 3 f) a(x)
Tr e pmom vl — (. p.moyyi=f,g.h | x -
g'(x) h(x)

Vl—*’ 2 F /lmax : {{<C’ p’ rna 0>irjnna y}}i g <Ca p’ m’ O>]]:f i (X i /lmax(f(x)))

TS b A {c. p.moym, y}}i —{c,p,m, o>]]=f = (X = Amin(f(X)))
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The meaning of a mathematical program follows our expemtatilt consists of an ob-
jective function, the domain of all decision variables, andst of constraints. Expressions
consists of four possibilities. They can be a natural nugrdo@snction that maps its argu-
ment to a constant, a function that projects outktieelement, or a function application.
The functions allowed during a function application faltanwo categories. Either they
define a set of feasible points or they compose their argusietat another function.

For example, consider the meaningyof |y whereX = {x : R>! y : R™}, We see

that

[T;2F x4yl s (L, 1, LR
:I[F F+:{(c, p,m o)}z — (c, p,m, o)]]

1

F;er:</, 0, ,/,]R> G Z kY (L, L, LR

0

=(f.g~ (x> 1(x) +9(x)) {x = X,

1

[THI-1: e p.mol - (c.p.mo)] r;zky:</, 0, ,/,JR>

0
=(f,g - (x> 1) + 90X - X1, (f = (X = [FDNX = Xe}}
=(f,g= (x= £(X) +9(x))){X = X1, X = X}

=X X1+ [X
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It is important to recognize that this function depends andbntexts. For instance, if
instead we defined = {t : R™° x : Ry : R}, the meaning ok + |y| would be
X b X + |X3|. This seemingly minor detail will become extremely impattduring the

discussion of transformations.

5.3 Soundness and Completeness

In the following section, we will prove two results. We wilhew that the meaning
of any mathematical program is a real number. Additionallg, will show that it is not
possible to represent every real number by the meaning ofthematical program using

our grammar. In other words, we will show that our languagmisnd, but not complete.

Theorem 1 (Soundness of Expressiongjr I € G defined above and ar¥/e S, ec E,

andte T suchthal;Zre:t, [[;X+e:t] € [t].

Proof. In the above presentation, we have been careful to sepaatr sunctions from
matrix functions. We do this since proving soundness orasé¢ahctions is more straight-
forward than matrix functions. In the following proof, wellxconsider all scalar cases
first. Then, we will use these results to help prove the maases. In both cases, the proof
follows from induction on the structure ef

In the first case, we must verify thfil; X + A : 5] € []. Recall, our typing rules stip-
ulate thatA must be a natural number denotedspyT hus, soundness follows immediately

since[[; 2+ A:n] = Aand[n] = {n}.
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Next, we must check that

[T ¢ di k% 40, @), 2, 0] € 145 (0 ewrn). /- 0)]

Our strategy will be to analyze the properties of the funtoa the left hand side. Then,
we will show that this function lies within the set defined e tight hand side.

We define the meaning of a scalar variable lookup as
[T ix: dig k% (0, 8kan), /0] = x € [ (x| = xc
Certainly, this function isfiine since
(AX+ (L= Yk = X+ (1 = Dk
In addition, we see that this function is linear. Notice that

Axe ML D x) _| 1 dk1D=k
% -

0 otherwise

whereD, c R"™% and we recall that(k,1,1) = 1 + Z';;ll roCp. Therefore, we can exactly

represent this function by its Taylor series

X = (€ 11), VEAX))
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Further, this function is increasing. Take-gr, y. Then, by definitionxc >g, Y« for each
k. Finally, we also see by definition that € 0. Therefore, we can safely assume that the
codomain ofk [ {x: d7| - xc lies ino.

Next, we must show that the above function lies within théofeing set

[¢. 0, exry). /0]

={fels>RIn[: f e /IN[0O exrp)] "L TN{g€[s = [0l}}s

Let us expand these terms. The first term becomes

fe[so>RIN[El=fe[s =R N{fem: fx) =) }mem

=fe[s > R]

We can eliminate the explicit symmetry requirement as aladunctions are symmetric.
Thus, each element of the set must map some domain to a redlenufihe next term

requires

fel/l ={f e[s > R]:Vae[0,1], f(x+ (L= A)y) = AF(X) + (L = DF(Y)}ses

In other words, this term stipulates that all functions ie #et must befane. Next, we

define that

f € [(0,ex12)] = {f €[s = R]: f(X) = (Ek11), VEAX))}ses
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This states that each function in the set must be a lineanpatyal where the linear coef-

ficient contains only a single one in thg, 1, 1) position. We also state that

fel/l1={fe[s—>R]:Vx2Yy, f(X) > f(y))ses

This mandates that each function in the set must be incigakinally, we define that

{ge[s—[oll} ={ge[s— o]}

Thus, each function in the set must have codonmai®ince we verified that the function
X € [[{x : d}ﬂ]] — X possesses each of these properties, our definition of Vat@ikups is
sound.

The soundness of a scalar constant follows in a similar nraiie must show that

2-AGA=-R (AR

By definition,

IC;Z-A:(,A-R)l=xe[Z]— A

This trivially lies in the set

[, A= R

={fels> RN : felIn[A]ni-In(gels - IR

seS
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Since this function isffine, constant, and both increasing and decreasing.

Now we consider the soundness of function application. Tiwesnust show that

[Tz r fer:t] et

We define that

I[F;ZI— f{e}{“:t]]:|[n f :{t}{“—>t]l{[[l";2ke:t]]}{“

By induction, we know that the meaning of each of the argusisrgound. Thus, we must
check the soundness of each built-in function.
Consider two relations defined on scalars: the partial odéd#ined by the positive

orthant and equality. We must show that

[[l" kg, {(C, p,m,0)}2 — <>]] € [[{(c, p,m, 0)}2 — <>]]

[T = e p.m )2 - o] e [ikc. p.m o) — o]

By definition, we see that

[T Fzr: e pm o2 = o] = fgm {x: () 2 9(x)

[T = e p.mo)2 = of = f.g - (x: F(X) = g(x)}

Thus, the meaning of both of these judgments is a functionrttags two functions to a
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feasible set. We see that the meaning their types is

2
[tc.p.mong - o] =|] | lI<c. p.m o] - 01
k=1

Thus, itis a set of functions where each function in the sgiswao scalar model functions
into a set of feasible points. Certainly, both functions\abfall within this set. Therefore,
their meaning is sound.

Next, we consider the meaning of addition. We must verify tha

[[F F+:{c, p,m, o>}§ — (C, p,m, o>]] € [[{(c, p, m, o)}ﬁ — (C, p,m, o>]]

for each type combination defined on page 35. By definitionsaeethat
[TF+: e pmoyz—(cpmoy] = f,gm (xm f(x) +9(x)

Since addition is an increasingfiae function, its composition with twafane functions is
affine, two convex functions, convex, and two concave, conckuether, the addition of
two polynomials is another polynomial whose fft@ents are the sum of those in the two
composing functions. We also know that the addition of twastant functions is constant,
increasing functions, increasing, and decreasing funstidecreasing. Finally, the addition
of two integers must be an integer and the addition of twosresateal. These properties

match those given by the typing rules, thus the meaning iscou
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We now examine the meaning of negation. We must check that

[[F F—{(c,p.mO)}i — (C,p,m, o>]] € [[{(c, p,m, o)} — (c, p,m, o>]]

for all the type combinations defined earlier on page 36. Véeifpthat

|[F F—:{(c, p,m o)} — (c, p,m,o)]] =f (x— -f(X)

Composition with negation reverses the convexity of a fiemct Thus, #ine functions
remain dfine, convex become concave, and concave become convexa®mubmposing
with negation reverses the sort of monotonicity. Negatiso areserves polynomality, but
negates the cdicients. Finally, the negation of a plus minus-one integeraias plus-
minus one integer, integer remains integer, real, realh&smatches the description given
in the typing rules, the meaning is sound.

We declare the meaning of subtraction to be

[Tr-:kcpmo)—cpmoy=f.gm (x f(x)-g()
We must verify that
[TF-:iepmoiz— c p.mo) e p.mo - . pmo)|

for each type combination on page 37. Subtraction can beateby combining addition
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and negation. In other word$,— g = f + (—Q). Since we type subtraction by combining
the addition and negation rules and their meaning is soledmieaning of subtraction is
also sound.

We define the meaning of multiplication as

|[F - 1 {{c, p,m 0)}2 — (C, p,m, 0>]l = f.g- (X f(X9(x)

We must determine whether

[T F=:tc.p.mo)Z - (c.p.moy| e [ i<c. p.m o)} — (c, p.m o)

for every type combination defined above on page 38. When staohis positive, a con-
stant scaling of a function preserves the convexity. Caalgrwhen a constant is negative,
a constant scaling reverses the convexity. Next, when amgitun is a polynomial, a con-
stant scaling of that polynomial remains a polynomial withled coéicients. When both

functions are linear polynomials, their product is quadratet f(x) = « + (a,x) and
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g(xX) =B+ (b, x). Then

f(X)9(X) = (@ + (a x))(B + (b, X))
= (a + B) + (b, X) + (&, x)) + (&, x){b, X)
= (@ +B) + (ab + Ba, x) + X" ab' x

= (a + B) + (ab + Ba, X) + (ab" x, X)

ab’ + ba' >
— " XX

:(cy+,8)+<a/b+,8a,x)+< >

In the final step, we find the symmetric form of the quadratieficcient. In addition, a
positive scaling preserves the monotonicity of a functidnleva negative scaling reverses
the monotonicity. Finally, if both arguments are zero-ome,know their product must be
zero-one. Similarly, the product of two plus-minus one nerstremains plus-minus one,
integer, integer, and real, real. Since each of these prepenatches the type description,
its meaning is sound.

Next, we consider division. We must ascertain whether

[T+ /: e p.mo)2 - (c.p.mo| [ ic.p.m o) - (c. p.m o)

for each type combination on page 39. By definition, we seke tha

[T+ /e pmo)z - (c.p.mo| = f,gm (x> F(/g(¥)
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When the second argument is constant, we have a constaimgsoéthe first function.

This behaves identically to multiplying the first functiop & constant scalar. In addition,
we know that a plus-minus one number divided by another piusis one remains plus-
minus one, an integer divided by a plus-minus one remaieg@art and a real divided by a
real remains real. As these properties align with the tysemiation, the meaning is sound.

Examine the meaning of the absolute value function

[Tri-1: ke pmot > (¢ p.mo)| = f - (xi- [F(X)])

We must show that

[TFI-1: e p.molt - (¢, p.m o) € [, p.m o)}k — (¢, p.m 0}

for every type combination defined above on page 41. Wherdlleeasgument is constant,
the resulting composition is constant. Therefore, theltegufunction must be fiine,
a constant polynomial, and both increasing and decreadtogther, the absolute value
preserves each of the codomains that we define above. Siese pinoperties agree with
the type descriptions, the meaning is sound.

Now, we must certify that

[T+ max: ((c. p.m o)) - ¢c. p.m 0] € [ {<c. p.m o)} — (¢, p.m o)
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for each defined typing combination on page 41. We define that
[T F max: (e, p.m o)}z - ¢c. p.m.o)| = f.g > (x > max(f(x). g(x))

When both arguments are constant, the resulting compiositiost be constant, hence,
affine. Next, we show that when both functions are convex, thétneg composition is

convex. We know that the max function is convex since

max@xy + (1 — A)y1, A% + (1= A)ys) = {g}lag}(M + (1 -y

< maxAaAx + max(1l— :
_ie{fa/lx'Jrie{Ez)}(( Dy

=1m - 1-A)m :
/li:s{l?z)}(x| * ( /l) ie{f.Z)}(yl

= Amax(xs, %) + (1 — 1) maxs, y»)

It is also increasing since for < y, max(x;, ;) < maxfy,y.). Therefore, the compo-
sition between max and a set of convex functions must be gomke mentioned above,
when both arguments are constant, the resulting composttigst be constant. Therefore,
the composition will be a constant polynomial whose cortstasficient is equal to the
maximum of the two constant cfiients. In addition, since the max function is increas-

ing, when both arguments are increasing, the result isasang. Conversely, when both
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arguments are decreasing, we have a similar result. Ndtate t

max f1(X), f2(X)} > f1(X) > fi(y)

max f1(x), f2(x)} > f2(x) > fa(y)

Therefore, mayf,(X), f2(X)} > max fi(y), f2(y)}. Thus, the composition is decreasing. Fi-
nally, we see that the maximum between t@pl} integers remaing0, 1}, {-1, 1} integer
remains{—1, 1}, integer, integer, and real, real. As each of these obsensatatches the
type descriptions, the meaning is sound.

Next, we assert that
[T Fmin: (¢, p.mo)i2 — (¢, p.m 0} € [{c, p.m 0)} — (c, p.m 0}
for each typing combination on page 42. We specify that
[T+ min: (e, p.m o)} — ¢c. p.m o) = f.g > (x = min(f(x). 9(x)))

As with the max function, when both arguments are constéms;,esult must be constant
and hence fine. By itself, the min function is concave where the proofdiek from a
similar argument as the one used to show the convexity of isefanction. In addition, it
is decreasing. Thus, the composition between min and a paimzave functions remains

concave. As mentioned above, the composition with two @mstfunctions is constant.
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The codficient is equal to the minimum of the two arguments. Additibnaince the min
function is decreasing, the composition with two decregfimctions remains decreasing.
The composition with two increasing functions remains éasing where the proof fol-
lows analogously to the max case. Finally, we see that whémdguments have &, 1}
codomain, the composition maintains tfte1} codomain. This also follows fof-1, 1}
integer, integer, and real codomains. Each of these piepédallows the type descriptions.
Thus, the meaning is sound.

Finally, we reestablish the definition of exponentiation as

[TF- ke pmo)z—cpmoy = f.gm (x> F()%)

We must show that

|[1" Fo{(e, p,moy2 = (c, p,m, 0>]] € |[{(c, p,m,0)}2 — (C, p,m, 0)]]

for each of the typing combinations formerly defined on pagjeHrst, let us consider when
the composition isfine. When both arguments are constant, the result must b&aobns
hence, #ine. Alternatively, when the second argument is O, then theltiag function
must be a constant 1 which is alsil@e. In addition, when the first argument t&@e and
the second argument is 1, the composition is equivalentaditst argument. Therefore,
the result is fline. Next, we consider when the composition is convex. Geytavhen the

first argument is convex and the second is 1, the composgiequal to the first argument.
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Thus, it must be convex. Next, we notice that> xP is convex wherp is positive and

even since
2

22 X XP) = x = p(p — 1)xP2

andp(p — 1)xP2 > 0 for all x. Therefore, the composition of this function with affirze
function must be convex. Alternatively, consider the caben the first argumentis a con-
vex, pure quadratic and the second argument2s ILet A; be the second-order cieient
of the first argument. Since this function is convéx,>s, 0. Thus, we can factod, into

UTU. Then, we notice that

V(AwvedX), vedx)) = V(UTUvedx), veqx))

= y(UvedX), Uveqx))

=lUvedX)ll2

=[IvedX)llu

Since all norms are convex, the composition must be convext, i a similar manner as
before, when the first argument is concave and the secondhargus 1, the result must
be concave. Now, let us determine when the composition isveolaler polynomial. Of
course, when both arguments are constant, we can direatipute the exponentiation
which yields a constant polynomial. In a similar manner, whiee second argument is 0,
the result must be a constant 1. Next, when the first argursemtaw-order polynomial

and the second argument is 1, the result remains a low-ogngmial with the same
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codficients as the first argument. Alternatively, consider treeaahen the first argument
is a linear polynomial of the formr + (a, veqx)) and we square the result. Then, we see

that

(o + (@ vedX)))? =a? + 2a(a, vedx)) + (8, vedx))(a, vedx))
=o? + (20a, vedx)) + veqx)"aa' veqx)

=o? + (20a, vedX)) + (aa' veqx), veqx))

Therefore, the composition is quadratic with fiigents (2, 2ca, aa’). Now, let us con-
sider when the composition is monotonic. As we've mentiobefbre, when both argu-
ments are constant, the result must be constant. Next, vieertbat the functiorx — xP
is increasing whemp > 1 and odd since

0
— X XP = x pxt
OX

and px’~1 > 0 for all x. Therefore, the composition of this function with an incieg
function is increasing and the the composition with a desirgpfunction is decreasing.
Finally, we consider the codomain of the function. When battpuments are zero-one
integer, we have four possible case§; @, 1°, and £. As long as we define®as 0 or
1, in each case, the result is either 0 or 1. Next, when botimaggts are plus-minus one
integer, we also have four possible casés:11!, —1!, and-1-1. Thus, the result remains

+1 integer. When both arguments produce an integer resultrenslecond argument is a
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positive constant, exponentiation reduces to multiplkcatSince the product of an integer
with another integer is an integer, the result of compositemains integer. Since each of
these properties matches our definition, the meaning ofrexgaation is sound.

At this point, we have verified soundness for all scalar fioms. Now, we address
matrix functions. This includes analyzing the soundnessafrix variable lookups and
soundness of matrix functions. we use these results frorsdhkars cases to prove these

results.

We begin by considering matrix variable lookups. There a@dases

|[F; {Xodip F X {(/, (0, &ip) /5 O J-}]] € |[{</, (0, &kip), /5 O J-}]]

[[F; {X:djp X {(/, (0, &k jy), s RF™, }]] € I[{(/, (0, &kip), /5 RY™ }]]
The meaning of both cases is defined by

[T ¢ i+ % {4 (0, @), 75 0V L]
=[x i+ s {0 0, i), S RYT™ |

=X € [[{x:d}ﬂ]] - X

For each pointwise function, this reduces to the scalar. dadsgs, we know that it isfine,
a linear polynomial, and increasing for each pointwise fiamc Further, we can reason that
the domain of each element is defineddiy the case of a general matrix or a real number

in the case of a symmetric variable. Hence, the only propgédywe can not extrapolate
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from the scalar case is symmetry. From the definition of thammeg of the type

{fe[s=>RIN[y]:...}ses

Wheny = £, we have that

L) ={f em: (%) = F(X) }mem

Thus, whenx, : 8™, we must verify thatx —» X = X x[ However, this follows
immediately since th&th projection of the domain must be an element of the[$&Y] =
S™. Thus, the meaning of variable lookups is sound.

We use a similar argument for matrix constants. We must shatv t

[rizr A { AL =R Y] < [{. A~ RO Y]]

The pointwise properties of the constant function follownfr those in the scalar case.
Therefore, each element iffiae, a constant polynomial, and both increasing and decreas-
ing. Thus, we simply need to check symmetry. We stipulateYha i when the constant
Ais symmetric andL when it is not. Since the function— A has a symmetric codomain
whenA is symmetric and our specification matches this propertydetinition is sound.

We have already established that the soundness of apphaipends on the soundness
of the built-in functions. Thus, we must check the remairbngdt-in functions; those that
operate on matrices.
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Consider the relations equality and the partial orders ddfiny the nonnegative orthant,

second-order cone, and the cone of positive semidefinitagaat We must show that

2 2

l[r = {ic pmoyy - of e {iic pmoynyi} — o
2 2
[[r Fx,: {lC p Mmooyl — o € {{c p.m o), v,
2 2

|7 2a: {1e. pmoypinfy = of < fre. pmoymyl; » o
2 2
[[F s, {lc p.moy vl — e{{<c, p.m o)} v},

We stipulate that

[T = i p.moynyi); o] = f.g i 1x: 109 = 903
[[F F>R, " {{(c, p, M, o){JT‘”, y}}i — o]l = f,g {X: f(X) =g, 9(X)}
[T ki {ite p.moynyt) — o] = f.g i 1x: 109 20 903

[[F st fie pmoy™ ) - <>]] = f.g- (x: F(¥) =5, g}

The meaning of the common type is

2
[[{Kc p.m o) yf, - 0]] = []—[ l{tcc. p. oy yi, | = o1
1

k=

Itis a set of functions where each function in the set mapdiwaotions to a feasible region.
The meaning of equality and nonnegativity lie in this seiaglas both of their arguments

are they same size. Fortunately, our typing rules requaenth = m, andn; = n,. Next,
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the meaning of the partial order defined by the second ordes kkes in this set when both
arguments are the same size and are vectors. The typingalstesequire this. Finally,

the meaning of the partial order defined by the cone of pesgemidefinite matrices lies
in the above set when both arguments are the same size, sgondrgymmetric. However,
again, each of these requirements is enforced by the typieg.r Therefore, the meaning
each of these functions is sound.

Now, we evaluate addition. We must verify that

2
e+ {ie pmoyy; = . p.moyy)|

e {1 pmory); - e p.m oy

for each typing combination on page 46 where we define that
2
[[F b+ {{(c, p,m, o)" y}}k — {(c, p,m 0)", y}]‘ =f,g (X f(X) +9(x)

Certainly, matrix addition can be defined pointwise. Thhe,doundness of each pointwise
function follows from soundness of the scalar version ofitialal We still must verify that
both arguments have the same size and determine when tht@ge&inction is symmetric.
The typing rules require that, = m, andn; = n,. Thus, the composition is well-formed.
In addition, whery; =y, = ¥, by induction, we know that both arguments must be sym-
metric. But, certainly the sum of two symmetric functionsieens symmetric. Therefore,

the meaning of addition is sound.
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Next, we consider negation. We must ascertain whether

I[n —{e. p.moy™ v} - (e p.m oy y }]]

l[{{<c p.m o)™y} — ((c. p.m o) ,y}]]

for all typing combinations on page 46 where we define
[+~ {te pmoymyf, - ke pmoyiy] = o (xm ~1()

Like addition, we define matrix negation pointwise. Therefathe soundness of each
pointwise function follows from the soundness of scalaratiesy. Now, we must verify
that the input and output arguments have the same size amchule¢ when the output is
symmetric. Since we require that= m, andn = ny, the composition will be well-formed.
Also, wheny; = %, by induction we know that the argument is symmetric. Siree t
negation of a symmetric matrix is also symmetric and we megilnaty = £ in this case,
the meaning of negation is sound.

Now, we can examine subtraction. However, since we defingattton by combining
addition and negation and these functions are sound, threlsess of subtraction immedi-
ately follows.

We define the multiplication of a matrix by a scalar as

[+ {iep.momyf; - e p.moyny = f.9- (x> 1(9g)
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and must verify that

|[r - {{ce p,m o)™,y }} - {(c.p.m, 0>{}‘”,y}]]

e {1 pmoyry; - . p.m oy

As with our other functions, this operation is defined poisgwon each element. Thus, the
soundness of each pointwise property follows from the snassl of scalar multiplication.
The typing rules also require that one of the arguments barsaad that the size of the
output must align with the matrix argument. Thus, the contjposis well-formed. Finally,
we know that a scaled symmetric matrix remains symmetri¢, tBa typing rules also state
thaty = y;. Hence, the meaning of scalar multiplication is sound.

Similarly, we define the division of a matrix by a scalar as

[[F -/ {ie pm 0>i“,-“”,y}} {(c, p,m o) ,y}]] = f,g= (x> 1(/9(x)
and must verify that

[r+/: {iepmoynyf - (e pmoyy|

l[{{<c p.m o™y} — ((c.p.m o) ,y}]]

This case follows identically to scalar multiplication waehe soundness follows from

soundness of scalar division.
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Next we consider submatrixing. We must determine whether

[[r Fee e R MO ) - (Cp m oy y}]l

e {1 pmogy, . i - . p.m oy

where we define that

1
[[r -t P MO WY Ll — (e, pm o)™, y}]] = f,abcdr fanca(X)

Submatrixing doesn’t change any of the pointwise propgrttanerely selects certain ele-
ments. Thus, as long as we select the correct elements,uhdrsess of the pointwise prop-
erties follows from induction. We state that type of thg)th element is that of;.,,)(j+,)
wheref is the first argument. This aligns with the definition of sulmxéng, so the point-
wise properties are sound. Next, we must check the size akthdt and conclude when
it is symmetry. We require thaty > n3 > n; andny > ns > n,. Further, we state that
m =1, —n1 +1andn = n, — n3 + 1. SO, we can not have any negatively sized matrices
nor can the result be larger than the input. Since this sge mlatches the definition of
submatrixing, the definition of size is sound. Further, wiger i, by induction we know
that the input is symmetric. Thus, all of the principle sulmgcas are symmetric. This
occurs whemy; = n3 andn, = n4. But, in this case, we state that . Thus, the meaning
of submatrixing is sound.

The meaning of subindexing, save symmetry, is defined ind@fraubmatrixing. Since

the result is scalar, it must be symmetric. Therefore, siheaneaning of submatrixing is
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sound, the soundness of subindexing immediately follows.

We define the meaning of matrix multiplication as

[T+ (e pmogmyf; - e pmoygny| = .9+ (x> 1(9g(x)

k

We must verify that

k

2
l[r b {{(c p,m o)} ,y}} — {{c, p,m, 0>{}‘”,y}]l

l[{{<c p.m o™y} — ((c.p.m o) ,y}]]

for each type combination on page 49. We defined these typéioafions in terms of
addition, scalar multiplication, and submatrixing. Sirtlke meaning of each of these op-
erations is sound and matrix multiplication is defined bystheperations, the meaning of
multiplication is sound.

We give the meaning of absolute value as
[T+ 11 e pmooyryl, = (e p.moynyi] = £ (x> Y) where¥; = 1y ()

We must determine that

[r+1-1: e pomoymyll, = (e p.moymy|
€ [[{Kc, p.m o™yl - (e p.moy™ y}]]

for all defined typing combinations on page 50. Since thelabswgalue function is defined
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pointwise by the scalar absolute value function, the soassliof each pointwise property
follows. We simply need to check the size and determine wherrésult is symmetric.
Our definition above requires that the input and output hdeatical size. But, we require
this during typing sincen = m; andn = n;. Further, the result must be symmetric when
the input is symmetric. But, we require that y;. Thus, the meaning of absolute value is
sound.

Next, we define the meaning of elementwise maximum as
l[l“ F max: {{(c, p, m, o>{}‘” y}}i — (C, p, m, o)]l =fe (x — rr?’?xfij(x))
and must verify that
[[F F max: {{(c, p. m, o)™, y}}i —(C,p,m, 0>]]

e l[{{<c, p.m oy i}, — (c.p.m 0>]]

for each typing combination on page 50. Notice that we canvatgntly define element-

wise maximum with binary maximum using the following reduesapplication

maxf)

= max fi11, max(foq, ..., maxXfm, maxfio, ..., maXfm1n, fon).-2)..)..0)..0)

Thus, the soundness of elementwise maximum follows fronstldness of binary max-
imum. In the degenerate case, when= n = 1, max; fj(x) = fi1(x). In this case,

soundness follows from induction. Therefore, the meanihglementwise maximum is
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sound.
The meaning of elementwise minimum follows in the exact samaner as element-
wise maximum. Its soundness follows from the soundnessairpiminimum.

We recount the meaning summation as

I[F F sum: {{(c, p,m o)™, y}}i — (C, p,m, 0)]] =fr (X = IZJ] fij(X))

We must see if

1
I[F - sum: {{(c, p,m o) y}}, — (c, p,m, o>]l
1
S [[{Kc, p.m oy y}}, — (c,p,m o>]l
for all typing combinations on page 51. Similar to elemesguninimum and maximum,

we notice that we can define summation using the followingnsee definition
Sun'(f) = f11+ f21+“‘+ fm1+ f12+“‘+ fm—l,n+ fmn

Therefore, the soundness of summation follows the sousdrfessddition. Further, when
m; = n; = 1, we sum nothing and the soundness follows from inductidmer&fore, the

meaning of summation is sound.
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Next, we recall the meaning of each definredorm as

[T 1 s e pmoy), = @ p.moy] = £ o (x o 11001

[T 11 ftee pmoynyif, = @ pmoy| = £ Gam 1)

[T {tce pmognyif, = @ pmoy| = £ (o 111

We must verify that all three of these functions lie withie et

[WaanTWﬁ—Manmﬁﬂ

for the same set of typing combinations defined above on p2agEéd& anyp-norm, when
the input is completely constant, the output will also bestant. Simply, it is thg-norm

of the input. Thus, in this case, the output is a constantrotyial. In addition, when this
occurs, we know that the output must also lfigna and both increasing and decreasing.
Next, since the definition of a norm requires it to be subagkelsind positively homoge-
neous, all norms are convex. As a result, when it is composidan dfine function, the
result must be convex. Finally, composition with this fuontalways returns a real num-
ber. Since these properties align with the type definititims,meaning of each-norm is
sound.

The meaning of transpose is defined as

WWT:WanmmywﬁﬁKQnmwmwﬂ=ﬂeWHXU
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We must check whether this function lies in the set

e p.moymy), - (e p.moym |

for each typing combination formerly defined on page 52. Régat transpose does not
change the pointwise properties of a matrix valued functi®@mply, it rearranges the
elements. In our typing rules, we stipulate that n;, n = my, and that the type of the
(i, pth element in the result is equal to the type of thg)th element in the argument.
Further, we require that = y;. As this follows the definition of transpose, the meaning is
sound.

Now, we define the meaning of trace as

[[F Ftr s {(c p.moy™, y}}i —{(c,p,m, o>]] = f > (X tr(X))

We must show that this function lies within

[{ie.p.moymy), - € p.mo)|

for each typing combination defined above on page 53. We dkfirese typing combina-
tions in terms of addition and subindexing. As the meaninigadh addition and subindex-
ing is sound and their combination follows the definition &ce, the meaning of trace

must be sound.
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Next, we consider the meaning of horizontal concatenation

2
[[r F[-]: {ie pomooym i — (e p.m oy y}]] = f.g (x> [(x) g(x)])
We must verify that this function lies within

e p.moymyif; - (e p.moy )|

for the typing combinations defined previously on page 53 hbrizontal concatenation
of two matrices lies within the seR™™ x R™" — R™M*"2] We satisfy this condition by
requiring thatm; = m, and specifying thai = my, n = n; + n,. In addition, we clearly see
that pointwise properties of this function are definedflgndg. We denote this fact in our
typing rules when we state thaf [)th property mirrorsf;; for j < n, andg; ;_,,, otherwise.
Thus, the meaning of horizontal concatenation is sound.

In a similar manner, we define the meaning of vertical comzdten by

: 2 F9)
Cr| | {c pmoymylf — (¢ p.momM™y| = f.g—|x

9(¥)

We must demonstrate that this function lies within

e oyl - (e p.moymy
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for each typing combination defined above on page 54. By diefmithe vertical concate-
nation of two matrices lies in the seRTV"x R™*" — RM™+*Mx"_\We fulfill this requirement

by mandating that; = n, and defining thai = my +nm,, n = n;. Similar to horizontal con-
catenation, the functionsandg define the pointwise properties of the result. We indicate
this property in our typing rules when we define that thg)th property is equal td;; for

I < my andgi_n, j, otherwise. Therefore, the meaning of vertical concatenas sound.

In addition, we specify the meaning of symmetric concaienas

f(x) 9

. ,
el ke pmomyll — (. p.moM™ | = f,ghe [x-
- g'(x) h(x)

We must check whether this function belongs to the set

(e p.moy™yil = {(c, p,m o)™y}
k

for all typing combinations previously defined on page 54e Simmetric concatenation

of three matrices has size defined by

Ny + Ny

[f®], [o],.

m + Mg

n3

m
g’ [hOY],

Thus, the function requires that; = M, N, = N3, Ny = My = My, andn, = Mg = nz. We
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also see that the result has sige n, by mp+ms. Next, we can clearly see that the pointwise
properties of the result depend on the pointwise propedti¢se functions. Consider the
(i, j)th property of the result. When % i < my and 1< j < ny, this property is defined
by fi;. Moving to the right, we fiset the column index bg,. Thus, when X< i < m and

n + 1< j < ng+ny, the property is specified by j_,,. When considering the lower left
corner, we @fset the row index byn,. Therefore, whem+1 <i <my+nmgand 1< j < ny,
the functional properties are denoteddy . Finally, we consider the last block, wéset
the row index bym; and the column index bg;. Thus, whemm, +1 < i < my + mg and

m +1 < j < ng + ny, the pointwise properties are found by analyzimg,, j_n,. Finally,
we must verify symmetry of the result. However, this follonwsnediately from the block
structure of the matrix and since bofljx) andh(x) are symmetric. As these properties
match the type definition, the meaning is sound.

Now, let us recall the meaning of the maximum eigenvaluetfanc

[[F; % F Amax: {{(C, p,m 0} y}}i —(c,p.m, 0>]] = f o (X Amalf (%))

We must determine whether this function lies in the set

l[{{<c, p.m oy} - (c.pm 0>]]

for each typing combination defined before on page 55. Fomims@émum eigenvalue func-

tion to be well-defined, its argument must be symmetric. @tis®, complex eigenvalues
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may exist and the maximum is not defined. We require this yngtahatm, = n; and

y = . Next, when the argument is completely constant, we can atenjpe maximum
eigenvalue directly. In this case, the result of the contposis constant and equal to the
above computation. Also in this situation, the result mes#hne and both increasing and

decreasing. Next, we see that the maximum eigenvalue imisticonvex since

Ama{aX + (L - @)Y) = lma>sz(aX +(1-a)Y)z
s

= ”rga>l<azTXz+ (1-a)'Yz
o

<maxaz' Xz+ max(1l - a)z' Yz
IZ2l2=1 l2lo=1

=a maxz' Xz+ (1 - @) maxz'Yz
l2l=1 I2l2=1

=aAmaxX) + (1 — @)AmaXY)

Since the composition of a convex function with dfiree function is convex, when the
argument is fline, the result must be convex. Since each of these properaghes our
type definitions, our meaning is sound.

Finally, we recollect the definition of the minimum eigenvalfunction as

[[F; %k in t {(¢C. p.M YT Y], — ¢c. p.m. 0>]] = f = (x> Ain( (X))

We must resolve whether this composition lies within

[{ie.p.moymy), - € p.mo)|
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based on our definition above on page 56. As with the maximwangalue function,
this function is well-defined only when the argument is squamnd symmetric. Assum-
ing a well-formed argument, when the argument is constaatcempute the minimum
eigenvalue directly. Therefore, the result must be a cohgtalynomial, &ine, and both
increasing and decreasing. Next, we observe that the mmiegenvalue function is con-
cave since

Amin(@X + (1 = @)Y) = ||rdmrlnzi:n1 Z'(aX+ (1 -a)Y)z

=minaz’Xz+(1-a)Z'Yz
I2l2=1

> min az' Xz+ min(1-a)z'Yz
Izlo=1 Izl=1

=aminzZ'Xz+(1-a) minz'Yz
I2l2=1 l2lp=1

= min(X) + (1 = @) Amin(Y)

Therefore, its composition with arffane function is concave. As each of these properties

follows the type definitions, the meaning is sound.

Since we compose mathematical programs from expressiaapw have all the re-
sults necessary to prove the soundness of mathematicabpneg This is characterized in

the following theorem.

Theorem 2 (Soundness of Mathematical ProgramB)r I' € G defined above and any
ne N suchthal +n,[I'+n] € R.
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Proof. We define that

|[F F min e over X st {e}i”]] = rr/limnB [T;2Fe:(cp,mR)](X
Xe

where A =[Z]

D)

B=

T;ZFe: <]
1

This will be a well-formed mathematical program whiiinX + e : {c, p, m, R)] is a real
scalar function and botA and B define a feasible region. From the soundness of expres-
sions, we know thgI'; X + e: (c, p, m,R)] is a real scalar function with a domain defined
by X. In addition, the soundness of expressions insureRkafines a feasible region. We

simply need to verify thafX] defines a feasible region. By definition,
n
[0 - dia] = T

But, this is trivially a feasible region. Therefore, the manatical program is well-formed.
Of course, it is possible that the feasible region is emptihersolution is unbounded.

When there are no feasible points, we say that the solutiersds When the solution is

unbounded, we say that the solutionHs. Then, by real, we really mean the extended

real numbers. Using this definition, the meaning of matheralgprograms is sound. O

Related to soundness is completeness. Although neithdrematical programs nor
expressions are complete, the incompleteness of mathlehptograms does not stem

from the incompleteness of expressions. We see this in tleviag two theorems.
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Theorem 3(Incompleteness of Mathematical Progrant3r any arbitrarya € R, we can
not necessarily construct anaaN such that fol” € G that contains all previously defined

builtin-in functions|[T" + n]] = «a.

Proof. Simply, there are an uncountable number of real numbergeSiar language can
only represent a countable number of programs, the langraageot possibly be complete.

O

The above proof does not give much information as to how cetaur language truly is.

The following theorem gives far more insight

Theorem 4(Completeness of Mathematical Programs with Respect toiirds) For any
arbitrary a € Q, there exists & N such that fod" € G that contains all previously defined

builtin-in functions|[T" + n]] = a.

Proof. Let a be any rational number. Then notice that

|[F F min @ over x : R™! st {}]] = mina = a
xeR

This result is slightly surprising since it holds even whendwo not define any built-in func-
tions. Further, it does not require completeness of exmessince we only use rational
constants.

Of course, incompleteness of mathematical programs isarticplarly restrictive. We
wish to accurately represent problems using a mathematiogkam, not construct trivial
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examples that give a particular result. Our ability to repré problems is directly related
to the functions we have available. Thus, the completenesspressions gives far more
information about the richness of the language. Theseteeatdé summarized in the fol-

lowing theorem.

Theorem 5 (Incompleteness of Expressiongjr any arbitrary t € (Jert, we can not
necessarily construct & € S, e E, and te T such that fol” € G that contains all

previously defined builtin-in function§l’; X + e : t] = 7.

Proof. The set J.;t contains an uncountable number of model functions. Sincéaou
guage can only define a countable number of built-in funsti@xpressions can not be

complete.

With a suficiently thorough set of base functions, expressions bedantmaore complete.
Since there are an uncountable number of model functionsaw@ever achieve full com-
pleteness. However, we can define enough functions to malarniuage useful.
Unfortunately, there is a more subtle problem with our laaggl Even if we can rep-
resent a function, the type of that function may be more gdritban necessary. In other
words, a function may possess a property, but our type syst@mot prove the result. For

example, lel" = x : R™! and consider the expressian x = Xx. This expression has type
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(L, L, L,R)since

(Mult2) (var) (Var)
X FXxx:(U,(00,1), L,R)

(Multl) (Var)

TEZFXeXeX:{(L, 1,1, R)

2 x:¢(,(001), 7,R) (Var)

'k {{,(01), " R), (U, (0,01),L,R)}— (L L, L,R) (Multl)

I'+=:{(01),,,R),{(01),, " R)} —(,(001),L,R)y (Mult2)

Yet, f = x — X* X * X is monotonically increasing sindg(x) = 3x? > 0 for all x. We can
further see that this is not simply a problem with monotdgicConsider the expression

X X X% X. This expression has tyge,, L, 1, R) since

(Mult3) (Var) T;ZF X X#X:{(L, L, 1, R)

TXE XsXeXxX:(L, 1, L, R)

I'+=:{{((01), "R),{(L, 1L, 1L,R)} - (L, 1,1,R) (Mult3)

Yet, f = X > X X X X is convex since”(x) = 12x? > 0 for all x. Finally, we can see
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that we also have the same problem with polynomality since

(Div) (Var) IMXrFxsxsX:{(L,L,1,R)

TEZEXsXxX/X:{(L,1, L, R)

'+/:{L, L, 1,R),{(0,1), ", R)} - (L, L,1, Ry (Div)

Yet, f = x> x* X * X/X = X2 is obviously quadratic.
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Chapter 6

Transformations

In the following section we will establish a series of im@ont transformations and re-
laxations used in mathematical programming. We begin bgrd#ag each transformation.
Then, we will show that each transformation does not changeieaning of a mathemati-

cal program.

6.1 Absolute Value

We can transform an inequality containing the absolutea/Alaction into multiple in-
equalities that contain linear functions. Consider theaalserex is scalar. The constraint
y > |X| states thay must be greater than both the positive and negative comp®pEéR.
Thus, we can add each of these requirements as a separat@icdns

We generalize this concept in the following transformation

T Zre zp, |6 : Q)= ITZFe =R, &: 0,

[Zre >k, €0
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We see these two representations are equivalent since

[CZ ke =g, le2l 0 O] ={x: F(X) =g, 1909}
={x: fij(¥) > |gij(¥)I}
={x: fij (%) > g (%), fij() > —g;;(x)}
={x: (9 zr, 9(%), F(x) zr, —9(¥)}
={x: (9 zr, 9} N {x: (%) 2r, —9(X)}
=[CZre 2k &: 0,0 e 2k, —6: O]

=[7(C; 2+ e g, lel 1 O)]

where 1<i<mand 1< j<n.

6.2 Expanding an Inequality

This transformation lies at the heart of many other trams&drons. Consider the case
where we have a constraint of the fomm x+ |y|. We would like to transform the absolute
value function, but this constraint does not follow the fatrdefined above. Recall, we

defined the absolute value transformation only for constsanf the form

[ZFe >R, |6 ¢
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In our current example, we have a constraint of the form

e >addxly): <

Thus, we can not immediately access the absolute valueidinsince it is encapsulated
within addition. Fortunately, we can reach it by adding ariléary variable. This allows

us to replace the above constraint by the pair

Z> X+t

t>1y

Then, we can reformulate the constrdint |y| using the transformation defined above.
We define our strategy according to the following rules. @grsa constraint of the

form

h(x) =g, f(91(X), ..., gm(X))

wherex € [T, Dk andDy € {R™", 8™ Z™" {0, 1}™", {1, 1}™"}. Define the extraction
setE to be the set of all indices that correspond to functi@psthat are neither constant
nor a projection of the original variables. In this caser¢he no benefit in extracting the

function. Letd; be a new candidate set of arguments where

) G(ry) i¢E
ai(y) =
yk(i) ieE
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We definex to be an injective function fronkt to the setin + 1,...,n + |[E|} andy €
Ty Dux [T R™<% wherem,gy andn,g match the size of the codomaingf We also

=n+1

defineny : [T DX [T, R — L, R™™ to be the projection wherer{(y))x = Yk

=n+1

fork = 1...n. In other words, we project out the original domain of eaatction. This
allows us to expand the domain of all functions to include rtleev auxiliary variables.

Then, when the function

y (@), ... 9m(y)

is monotonically increasing, we may reformulate the castinto

h(me(¥)) =, @), .- -, m(Y))

Yy =R, Gi(7x(Y))

fori e E.

Let us apply this procedure to the constraint X + |y|. We can rewrite this function as
X1 > % + %3] for x € R3. Now, since the first argument to addition is a decision \deia
we do not expand it. Alternatively, the second argument ihaeconstant nor a decision

variable, so we must expand it. Thus, our candidate set ofaegts is

G1(y) = [7x(WN]z = V3

G2(Y) = Ya
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wherern, : R* — R® and fry(Y)]« = Y« for k = 1, 2, 3. The function

yER*H y3+V,

is monotonically increasing. Thus, we may expand the abowstcaint into

Yi=Y2+Ya

Ya > Y3l

which is our desired reformulation.
Before we prove the correctness of this transformationj$etonsider one additional
example. Ruminate over the constraiit f(4, X, 7) wheref(x,y, z2) = xyz According to

the above expansion rules, we can reformulate this constrdao

X > 4(y)7

y > [X

Although we can easily see that this set of constraints isvabtant to the original, this
example is interesting sindeis not monotonically increasing. That is why we are careful
to distinguish wherf is increasing and when the compositiomr-> f(§.(X), .. ., Gm(X)) is

increasing.
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We must prove this strategy produces an equivalent feasglen. Let

X € {x € ﬂ Dy : h(X) =k, F(01(X),..., gm(X))}
k=1

We must show that there exists

n n+|E
ye {ye [ [oux | | R™™: ) =r, F@0), - ). Yeoy =R, Glry))i € E}

k=1 k=n+1

such thatr,(y) = x. Choosey such thaty; = x fori = 1...nandy,; = gi(X) fori € E.
Certainly, x = my(y). Therefore, we must check thgtlies in the reformulated feasible
region. Combining the rules of the transformational sggtend our definition oy we see

that

Gi(y) = gi(mx(y)) = 6i(¥)

fori ¢ E and

Gi(Y) = Yuiy) = Gi(¥)

fori € E. In other wordsgily) = gi(x) for all i. Thus,

h(zx(y)) = h(x) zr, F(G2(X). ... gm(¥) = F(@u(Y). - ... Gm(¥))

This shows that we satisfy the first constraint in our refdated region. Now, we must

verify that we satisfy the remaining constraints. Siggg = 0i(X) = di(m«(y)), fori € E,
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we see that

Yeiy = 9i(X) = Gi(7x(y)) Zr, Gi(mx(y))

Thus, we satisfy the remaining constraints. Therefgris feasible and a projection of
the reformulated feasible region is a subset of the origeadible region. In the reverse

direction, we take

n n+|E
ye {ye [ [ [ | R™™: hy)) =r, F@0): - Gnly): Yooy Zr. Grly)). i € E}
k=1

k=n+1

We must show that there exists

X € {x € l_[Z)k :h(X) =k, f(02(%), ..., gm(X))}
kel

such thatx = m.(y). Choosex such thatx = n,(y). We must show thax lies within the
original feasible region. Choosesuch thaty,; = gi(mx(y)) fori € E andy; = y; for
i € {1,...,n}. Notice thaty'possesses three properties. First, we seentlf@t = x since
% =y fori € {1,...,n}. Second, we know that =g, ¥ sincey.q =r. Gi(@x®)) = Ve
fori € Eandy; = ¥ fori € {1,..., n}. Third, we have that;(y) = gi(7«(})) since

G = Yy = Gi(x(Y) = Gi(X) = Gi(x(H)) for i € E anddi(y) = gi(n«(¥)) fori ¢ E. Since
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the functiony — f(8.(y),..., dm(y)) is monotonically increasing, we have that

h(¥) = h(zx(¥)) =r, f(@Y).- -, 0m(¥))
>r. (@), ()
= F(G(me()s - - - » Im(x($)))

= f(9u(X), . .., gn(X))

Therefore,x is feasible and the original feasible region is a subset afogeption of the
reformulated feasible region. Hence, both feasible regava equivalent up to a projection.

We define this transformation formally as

TZFe =g, HEM:0) =S e =g, TEM: O (2 F Xy =g, €: OFE

when

Lk @ (e p, 200k
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where

T = {x}]
< n+|E
X = {x};

Xy Otherwise

E

{ie#x,68+A

andx is an injective function betwee and{n+ 1,...,n + |E[}.
In order to show that these two formulations are equivaleathegin by noting that we

have have already shown that

[T;Z+ e =g, f{e}": O]

= {X (S lk:—l[ Dk . h(X) E]R+ f(gl(x)’ e gm(x))}

k=n+1

n n+|E]
=1ty {ye [ [2ex | | ™™ hey)) =x, F@0), - Guy). Yooy Zr. Glmely)). i € E}
k=1

=7y [[F; Stepzg, F@M: O NSk Xy 2k, € <>}‘€E]]
as long ax — f(§1(y),...,0m(y)) is monotonically increasing. However, we assume that

LS fHEl: (e p. /o)Ly
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Since our semantics are sound, this implies that

X F(§2(%), . .., Om(X)
e[ p. 205 v

:{f €[s>R¥|n[y]: fij € |[Cij]] N |[p”]l NL/TN {g € [s — [[oij]”}}

seS

Thus, the functiorx — f(§1(X), ..., dm(X)) is monotonically increasing. Therefore, both
formulations are equivalent up to a projection.

There are three other related transformations. First, iaalthat

TEre =g, (O :0) =S epzg, TEM: O (N Fexg, X : OFF

when

LS @ (e p N\, o)L y)

This is equivalent to the first transformation except thate tltomposition

X F(01(X), ..., 0m(X)) is monotonically decreasing. Second, we also define that

TEr (e =k, :0) =S F F@M =g, & : O, ([ Fe2g, X : OFE

when

LS (@ (ep /05y
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This is equivalent to the first transformation except thaewgand the left hand side instead

of the right. Finally, we define that

T e 2k, €:0) =T F H{@M =g, &: O, (T2 F Xy =g, €: O)F

when

A

LEr f@M: (e P\, 0L Y

We see this transformation is identical to the original @td¢bat we expand the left hand
side and the composition is decreasing. The proof that ebittese transformations pro-

duces an equivalent feasible region follows in a mannerairto the proof above.

6.3 Expanding an Equality

We expand an inequality constraint by adding a set of newlianxivariables and in-
equality constraints. While this constitutes a valid tfarmmation, we could add equality
constraints instead. For example, we could expand thereomist > x+|y| intoz > x+t and
t = |X. In fact, we can always add an equality constraint regasdf@ke original function
is monotonic. Unfortunately, in most instances, this makesproblem more dicult to
solve. For example, the constraint |X| is not convex while the inequality> |x| preserves
convexity. Therefore, we only want use this transformatidien the new constraint, not
the original, is convex. This occurs only when the left anghtihand sides of the new

constraint arefane.
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We formalize this strategy according to the following rul€3onsider a constraint of

the form

h(x) R £(91(x), .- ., gm(X))

wherex € [Tz, R™™ and R denotes an arbitrary relation. Let the extractiorEdet the

set of all indices where the functigpis afine. Letg; be the new set of arguments where

) G(rdy) i¢E
ai(y) =
V(i) icE

where we define, ry, andy analogously to our discussion above. Then, we may reformu-

late the above constraint into

h(m(y)) R £(@u(Y). - -, Gm(¥))

Yty = 9i(mx(y))

fori e E.

We must prove this transformation produces an equivalasiliée region. Let

X € {x € ]—[Dk :h(¥) R f(gu(), - -,gm(X))}
kel
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We must show that there exists

n n+|E|
ye {y e[ [oex [ | R™™: i) R F@0), - 8nl). Yy = Gi(mely)). i € E}
k=1

k=n+1

such thatr.(y) = x. Choosey such that; = x fori = 1...nandy,; = gi(X) fori € E. We
immediately see that,(y) = x. Thus, we must verify that lies within the reformulated
feasible region. By combining the rules of the transforovai strategy and our definition

of y, we have that

Gi(y) = gi(mx(¥)) = 6i(¥)

fori ¢ E and

Gi(Y) = Yuiy) = Gi(¥)

fori e E. Thus,di(y) = gi(x) for all i. Therefore,

h(zx(y)) = h(¥) R £(G2(X); - - .. gm(¥) = F(@u(Y). - - .. Gm(¥))

Therefore, we satisfy the first constraint. Now, we mustfyehiat we satisfy the remaining

constraints. By construction,

Yei) = 9i(X)

fori € E. Therefore,y lies within the reformulated feasible region and a propactof

the reformulated feasible region is a subset of the origeadible region. In the reverse
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direction, we take

n n+|E|
ye {y € D Dy X kgl R™ ™ h(my(y)) R f(8a(Y), - - - Im(Y)) Yy = 9i(mx(y)), i € E}

We must show there exist

X € {x € ]—[Dk :h(¥) R f(gu(), - . -,gm(X))}

k=1

such thatx = m4(y). Choosex such thatx = m.(y). We must demonstrate thatlies
within the original feasible region. Sin@g(Y) = Y.«i = Gi(7x(y)) = gi(X) fori € E and

ai(y) = gi(mx(y)) = gi(x) for i ¢ E, we know thaii(y) = gi(x) for all i. Thus, we have that

h(x) = h(z«(y)) R £(Qu(y). - - - Gm(¥))

=f (gl(X), ceey gm(x))

Thus, x lies within the original feasible region and the originah$éle region is a subset
of a projection of the reformulated feasible region. Theref both feasible regions are
equivalent up to a projection.

We define this expansion transformation formally as

TEreREMN: O) =S r R EM: O, (2 F Xy = €: Of<EF
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where

X@ TiZre:{(,pmoyy}

€ otherwise

E:{i :F;Zra:{(/,p,m,oﬁ-t,y}}

andk is an injective function betwedg and{n+ 1,...,n+ |E|}.

In order to prove that these two formulations are equival@atnotice that

[T;ZFeRf{el": <]

- {x € 1;[ R™™: h(X) R f(gu(),..., gm(X))}

n n+|E|
=11, {ye [ [ox | | R™™: ) R F@0) - Gnl¥): Yoy = Qi) i € E}
k=1

k=n+1

=1y [[F; SepR @M Ok X =€ O}iEE]]

Therefore, both formulations are equivalent up to a praect

We have one additional transformation intimately relatethe first

TIGEF fle"Rey:0) =S F F@MRey: O, (2 F Xy = €: Of<EF
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where we define the extraction detas above. Simply, we reverse the left and right hand
sides. We can prove the correctness of this transformasorgla similar argument as

above.

6.4 Contracting a Single Auxiliary Variable and a Single Inequality

The transformational process requires that we expand noostraints before we can
effectively transform them. As a byproduct of this process, wardtically increase the
size of the problem. Although the resulting problem is extedy sparse, we prefer that our
final result be smaller. We term the process of eliminatingst@ints and auxiliary vari-
ables as contraction. In general, determining redundamgtcaints is extremely ficult.
Our focus will be on eliminating the sort of constraint gexied by expansion.

Consider the problem

i 2
st z>X+t
t>1yl

x>0

By inspection, we can see that optimal value is 0 and the @btsolution is (00, 0, 0).
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Noticing the exposed absolute value, we reformulate tloblpm into

min z
(xy,zt)eR4

st Z> X+t

At this point, we observe that we use the variable only three places: the constraints
z> x+t,t>y, andt > —-y. In addition, the functionx,y, z t) — x + t is monotonically

increasing. Thus, we can contract the varialded reformulate the problem into

min Z
(xY,2)eR3

st z>X+y

We can see this problem also has an optimal value of 0 and aobf (0, 0, 0).
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We codify this process in the following steps. Consider dfam of the form

min f(y)

yeANB

n
where A = [] Dk
k=1

B= irj{y - giy) Rhi(y)in

{y:ay) zr, h(y)}n
t

MY * Yq Zr, Vi(V)}

=1

for some fixedq € {1,...,n} where R denotes an arbitrary relation and we defipeas

above. This problem has the same optimal value as

min f(7y(X))
xeANB

~ g-1 n
where A = (H Z)k) X ( I Z)k)
k=1 k=g+1
S

B= X2 6y (9) R hy(ary (I
ol

i1

X g(my(X) =g, h(mj(X)}

where we define the injectior : A - Aas

X« k<q

[ry()]k = supvj(Xa, ..., Xq-1,0, X, ..., X1) K=g
J

X1 k>q
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and the injectionr; : A —» Aas

Xk k<q

[0k = vi(Xe, ... X%g-1,0, Xgp - . » 1) k=0

Xk-1 k>q

In addition, we must satisfy the following conditions. Ejr&e require thatf(y) = f(2),
gi(y) = gi(2, g(y) = 9(2), andv(y) = v(2) for all y,z € A wherey, = z for all k saveq.
In other words, the only function that may dependygmust beh. Second, the functioh
must be monotonically increasing.

We must prove both formulations produce the same optimakvddefine the projection
7 0 A = Aby [m(Y)]k = Yk whenk < g and fry(Y)]x = Yies Whenk > g. Our argument
adheres to the following steps. First, take an optimal smiuio the original problemy*.
Then, show that,(y*) is feasible in the reformulated problem. Since the obyedtinction
does not depend ag, this tells us that the optimal value of the reformulatedyem is less
than or equal to the original. Second, take an optimal smiub the reformulated problem,
X*. Show thatr,(x*) is feasible in the original problem. Again, since the objexfunction
does not depend on, the optimal value of the original problem must be less theegpial
to the reformulated. Therefore, both problems must poshessame optimal value.

Lety* be optimal in the original problem and consider the paint 7.(y*). We must
show thatx is feasible in the reformulated problem. Sirgzgeandh; do not depend oy,

we satisfy the constrairg (m,(x)) R hi(my(x)). Therefore, we must show thgfry(x)) >g,

137



h(7;(X)). Sincey, =g, Vvj(y’) for all j, we know thatyy >g, sup vj(y") = [r,(X)]q.- Hence,

y* >r, my(X). Sincehis increasing, we observe that

9(my(x)) = 9(y) zr. h(Y') zr, h(my(¥) zr, h(z;(x))

Thus, we have shown thatis feasible in the reformulated problem. Since the objectiv
function does not depend on, f(y") = f(ry(X)). Therefore, the optimal value of the
reformulated problem must be less than or equal to the @igin

Let x* be optimal in the reformulated problem and consider thetpoia m,(x*). We
must show thay is feasible in the original problem. Singeandh; do not depend o,
we satisfy the constraig;(y) R hi(y). Thus, we must demonstrate tiigy) >g, h(y) and

thaty, >, Vi(y). First, we see that

a(y) = 9(mry(X)) zr, h(zy(x)) = h(y)

We also see that

Yo = [0 = SUPVI(X -+ K320, X - Xp 1) = SUBV(Y) R, Vi(¥)
J J

Thus, we see thatis feasible in the original problem. Since the objectivection does
not depend ory,, we see thaf (7,(x)) = f(y). Hence, the optimal value of the original
problem must be less than or equal to the reformulated. Hexveembined with the first
part of our argument, this implies that both problems pastessame optimal value.
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We define this transformation formally with the following

T(F + min eover {x: d}j st {€}’, & >R, &, {Xq >r, éj}t,-)

=I' + min e over {X : d}ﬂ_l, (X dlg_q.s St{E}, (&1 2R, §j}tj

wheree; is equal toe; where all occurrences of;, have been replaced [®y. "We require
thatl'; {(x : d}j - & : {(c, p, ./, o)}f,y} andxy, may not occur ire, , &;, ande;.

We prove that the transformation produces an equivalentdtation by noting that

l[F - min eover {x: d}} st {€}°,& >R, &, {Xq =g, éj}tj]]

min f(y)

yeANB

n
where A = [] D
k=1

- B= irjwl{y: gi(y) Rhi(y)in

{y:a(y) zr, hy)in
t

MUY Ya Zr, Vi)

j=1
min_f (7ry(x))
XeANB
.~ (01 n
where A = (H Z)k) X ( I Z)k)
k=1 k=g+1
S

B= N{x:gmy(x) Rh(ry(x))n

[N

Nt
]
N

X g(my(X) =g, h(mj(x))}

=1

I[F F min eover {X: d}ﬂ‘l, {X: d}Q:q+1 st {e}>, (&1 =g, 5,—}5-]]

|[T (F Fmin eover {X: d}} st {€}5, & >g, &, {Xq >R, éj}tj)]]

139



as long as the following conditions are met. First, the onlyction that may depend on
yq must beh. We satisfy this condition since we stipulate tixatmust not occur ire, g,
é,, and€;. Second, we require that the functibrbe monotonically increasing. We also
satisfy this condition since our semantics are sound anceeyeine that’; {x : d}j - & :
{(c, D, o)}}’,y}. Therefore, our transformation is well defined.

As with expansion, we have three other cases that we musedéiirst, we state that

T(F F min e over {x : d}y st{€}’, & >g, &,{& =g, Xq]}tj)

=" r min e over {x: d}j™", {x : d}j_o, st{e}}, (&1 >, §}]

whenT; {x: djf +- & : {(c, p. \. O}, y} and we meet the other formerly defined conditions.
This is equivalent to the first transformation, but the fime, is decreasing. Second, we

define

T(F F min eover {x: d}y st{e}’, & >g, &, {& >, Xq}tj)

=T+ min e over {x : d}/ ", {x : d}i__o,; st {e}}, {§ =g, &)t

whenl'; {X: djp + & : {(c, p, /. o)}}i,y} and we meet the other formerly defined conditions.

This is also equivalent to the first transformation, but wehange the left and right hand
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sides. Finally, we define that

T(F + min eover {x : d}j st {€}’, & >R, &, {Xq >r, éj}t,-)

=I" F min e over {x : d} ™, {x : d}i_,, st (e}, {§ =g, &)t

whenT; {x: djf +- & : {(c, p. \. O, y} and we meet the other formerly defined conditions.
This is equivalent to the third transformation, but the fimtis decreasing. The proof that

each of these transformations defines an equivalent profoliéows similarly to the proof

above.

6.5 Contracting a Single Auxiliary Variable and a Single Equality

We must consider one final contraction scenario. Ruminage tve problem

min y4
(xy,2€R3
st z>f(X)
X=g(y)

We can transform this problem into

min Z
(y,2eR?

st zx f(g(y))
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In fact, once we isolate a decision variable on one side ofcuraldy, we can always
eliminate that variable from the problem.

We summarize this process with the following rules. Consederoblem of the form

min f(y)

yeANB

n
where A = [] Dk
k=1

B= {y:aiy) Rhi(y)}n

{y:yq=viy)

where we defing, R, andDy as above. This problem has the same optimal value as

min_f (my(x))
xeANB
~ g-1 n
where A = (H Z)k) x( Il Z)k)
k=1 k=g+1

B= {y:g(m(X) Rh(m,())®

We require that(y) = v(2) for all y, z€ A such thaty, = z for all k saveq. In other words,
v may not depend ow.

We must prove this reformulation produces an equivalenblpro. Sincev does not
depend ory,, the constrainy, = v(y) defines the value of;, in terms of the other decision
variables. Thus, we may replace the dependenagy, by v(y). We accomplish this through

the projectionn,.
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We define this transformation formally with the following

T(F F min eover {x: d}y st {e}’, xg = é)

=I" F min e over {x : d} ™, {x : d}_q,, st {€}]

where we defin@ ase where we replace all occurrencesxgfby €. We require thak,
does not occur ie.”

We prove this transformation produces an equivalent soidiy observing that

[[F F min e over {x: d}y st{e}’, X = é]l

min f(y)

yeANB

n
where A = [] Dk
— k=1

B= {y:aiy) Rh(y)}n
{y:yq=vy)}
min_ f(mry(X))
XeANB

=J where A= (qf[lﬂk) x( rn[ Z)k)
k=1

k=g+1

B= {y:g(m,(x) Rh(mX))?

= [[F F min e over {X : d}E‘l, {x: dlfq.q st {e_z}f]]

= [[7' (r  min e over {x : d}j st {€}’, X = é)]]

as long ay does not depend op. However, we satisfy this requirement since we stipulate
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thaty, may not occur ire” Thus, both problems produce the same optimal value.

We must define one additional, related transformation. \&& $hat

T(F F min eover {x: d}j st{e}’, &= xq)

=T+ min e over {x : d}/ ", {x : d}i_q,, st {&}f

This nearly identical transformation simply reverses theadity containingx,. The cor-

rectness of this transformation follows in a manner sinibaabove.

6.6 Binary Maximum

We can expand an inequality containing the binary maximumstion into two inequal-
ities. The constraing > max f(x), g(x)) tells us thaty must be bound below by bothand
g. Thus, we can add each of these provisions as a separateatonst

We define this transformation as

T Ere =g, maxe,e):0)= I[Zre =g, &: O,

ke >R, 6:¢
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We prove the equivalence of both formulations by noting that

[;Z ke >g, maxe, &) : 0)]
={x: () zr, maxg(x). h(x))}
={x: f(¥) zg, 9(x), (%) zr, h(X)}
={x: () zr, ()} N {X: F(X) =r, h(X)}
=[[Zre >, &: 0Tk e g, 65: 0]

=[7(T; 2 + & =g, Maxe, &) : ©)]

6.7 Binary Minimum

We transform inequalities containing the binary minimumdtion analogously to in-

equalities containing the binary maximum. We charactdhietransformation as

T2 Fmin(e, &) >r, 63:0)= INZFe >R, 6: 90,

[ZFe >R, 6:0
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We prove this produces an equivalent feasible region byimgtithat

[T; 2+ min(ey, &) =g, € : )]
={x: min(f(x), 9(x)) zr, h(X)}
={x: f(X) zg, h(x),9(¥) zr. h(x)}
={x: (%) zr, h(X¥)} N {x: 9(X) =g, (X}
=[iZre zr, 6: 0. Xk & 2R, 6: 0]

=[7(T; Z + min(es, &) =g, € : )]

6.8 Elementwise Maximum

We can transform an inequality containing the max functio several inequalities.
In a manner similar to the binary maximum, the constrgintmaxX) mandates that be
greater than every element ¥f We add each of these requirements separately.

We characterize this transformation as

T ([ Xr e zr, Maxey) : 0) = (X F & zx, &ij 1 Of"

wherel;X + & : {(c, p, m, o>{}‘”, y} andey; denotes the subindexing functianapplied to

e, with arguments and j. We prove this transformation produces an equivalent ibéasi
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region by noticing that

[[;ZF e =g, maxey) : O] ={x: f(X) > maxg(x))}

={x: f(x) > g;;(x) for all i, j}

= ﬂ{x (%) > gi;(%)}
i

:ﬂ[[F;EI— €1 =R, € :Q]l
ij

=02 - €1 zx, & 0N

=[7 (T;2 + & =g, Maxer) : O)]

6.9 Elementwise Minimum

We transform an inequality containing the min function inrailr manner as the max

function. We define that

T (U2 - min(ey) =g, & 0) = ([, ZF eyj =g, & O}
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wherel'; X + &, . {(c, p, m, o){?” y}. We prove this transformation behaves correctly by

recognizing that

[T 2+ min(er) =g, € : ¢ ={x: min(f(xX)) > g(x)}

={x: fi;(x) > g(x) for all i, j}

= ﬂ{x i (%) > 9(X)}
i

=2 F ey 2, &: 0]
i

=02 r eyj 2r, & 0N

=7 (T; + min(ey) >g, & : 0)]

6.10 Summation

Summations can be replaced by a series of addition and mgl@perations. Some-
times this transformation is necessary to expose the ihdalielements of a matrix to
further transformations.

Formally, we define that
T(@XrFsume):c,pmo)=;Zre 1+ - +6u+€n+- -+ €Enm:{C P,MO0)

wherel'; X + e: {{c,p,m,0 [}‘” y}. Notice, we transform a function rather than a constraint
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with this transformation. We prove this produces an eqeiviaiunction by observing that

[T; %+ sunfe) : (c, p,m 0)] (X)

=sun(f(x))
= Z fIJ(X)
i=1 j=1

:fll(X)-l- s 4 fml(X) + flz(X)-I-“‘ + fmn(X)
=[[ZFen+--+€mu+ea+-+enn:{cp,mo)] (X

=7 (T;Z + sune) : (c, p,m o))] (X)

6.11 Infinity-Norm

Although some solvers can directly handle an inequalitt&@iomg the infinity-norm,
most solvers require that the constraint be reformulatedarsystem of linear inequalities.
Our transformation system accomplishes this reformutatictwo steps. First, we trans-
form the constraint into a system of intermediate constsdhmat contain the absolute value
function. Then, we may apply other transformations thadnize the result.

We define this transformation with the following rule

T2 e 2g, €l 1 0) ={T;ZF & >R, |61l + - +|enl}"
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We see this transformation produces the same feasiblarbegiooting that

[T;Z+ & =g, ll€le - O] ={x: F(X) = 19(X)]le0}

= {x (X)) > m%i] |fij(X)|}
{X f(x) > Z |fI](X)|}

{x: 0 > [fia(X) + - - - + [Fin (X1}

&Da L_ s

[[ (TiZh e zx, €] + -+ e}
[7

T2 F e =g, llElw : O)]

6.12 One-Norm

Recall that for ank € R™", ||x||; = ||X|l». Thus, we can transform any use of the one-
norm function into the infinity-norm. This allows us to uté our above transformation.

We stipulate that

Tk (c,p,mo)) =T;Z+ €]l : (C, p,m 0)
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We see that this produces an equivalent function since

[T;Z F lelly : <c, p,mo)]| (x) =IIf(X)ll.
=17 (X)lloo
==k el < (e p.m o) ] (%)

=[7 (2 F el - (¢, p,m o)] (X

6.13 Two-Norm

Transforming a constraint containing the two-norm creaesimber of dficulties.
Unlike the one and infinity norms, we want to apply &elient transformation when the
argument is a vector rather than a matrix. In short, when tganaent is a vector, we
can transform the constraint into a second order cone @nstr'When the argument is
a matrix, we are forced to generate a semi-definite constraie consider these cases
separately.

We define the transformation of a column vector as

€1
TOEre =g, llegl:0)=T2+ >q 0
57}

whenl; 2+ & : {{c, p,m, o>{}‘1, y}. We prove this transformation is well-formed by observ-
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ing that

[ 2+ e =g, llellz : O] ={x: £(X) =r. I9(X)Il2}

f(x)

=X >q 0
9(x)
&

=2 r >q 0
&

[T(@2r e =k, |l : O)]

In a similar manner, we define the transformation of row veat

TEEZre >, llel:0)=T;ZrF[e1e] 20

whenl; X + & @ {{C,p,m, o)ilj”,y}. The proof that this transformation produces an equiva-
lent feasible region is nearly identical to the proof above.

When the argument to the two-norm is a matrix, the result @aitrdnsformed into a
semidefinite constraint. Before we begin, we need a relaigthical result. LeX € R™".

We must show that the positive eigenvalues of the matrix

0 X'

are the singular values of. Letv = [v], VI]™ be an eigenvector ok with associated
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eigenvaluel. We see that

0 X' Vi Vi
=4
X 0|{w Vo
XTV2 Vi
= =A
Xvq Vo
XTVo=Av;
—
Xvi=AV,

:>XT Xvy = /12V1

Thus, the absolute value of each eigenvaluid:sf a singular value oX. This seems a bit
puzzling since there are twice as many eigenvalue$ a$ there are singular valuesXf
However, we notice that

0 X"||w —XTv, —AV; Vi
= = — _/l

X 0f[-w Xvg AVy —V2

Thus, whenever = [v], v;]" is an eigenvector with associated eigenvaluso is ], —v;]"
with associated eigenvaluel. Therefore, we can find the singular valuesxaby finding

the nonnegative eigenvalues)@.f This allows us to view a constraint on the two-norm of
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X as a constraint on the largest eigenvalux_oThis gives us the following transformation

0 €
TGEre =g, llellz: ©) =T Z F € 2R, Amax DO

We see this transformation produces an equivalent feasglen by noting that

[T ZF e =g, llegllz - O] ={x: f(X) =g, I9(X)Il2}

={x: f(X) =r, Tma9(X)

0 g'(¥
gx) O
0 ¢
=X F & >R, Amax L O

=[7 @2 F e 2R, 2 : O)]

6.14 Maximum Eigenvalue

A constraint on the maximum eigenvalue of a matrix may berrefdated into a semidef-
inite constraint. Let be a scalar variable andla matrix. Then, the constraitt >s, A
requires that be larger than the maximum eigenvaluefof Recall, adding a multiple of
the identity to a matrix simply shifts the eigenvalues ot tmatrix. Thus, the matrikl — A
possesses a set of eigenval§les Amay, - - ..t — Amin}. Since the constrairit — A >5, 0

requires that all eigenvalues to be nonnegative, it egemtbl states that— 1; > 0 ort > 4
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for all i. Of course, this means thianust be at least as large as the largest eigenvalue.

We formulate this transformation as

TEZFe >R, Amad€) 1 O)=ZFe ]l >5, : 0

wherel is the identity matrix with size the same @s We see that this transformation

behaves correctly by noticing that

[T+ e zx. Ama(€:) : O] =(x: f(X) = Anad9(¥))}
={x: f(X)I =5, 9(X)}
=[T;Zrexl>s &: 9]

=[7 (T;ZF e =g, Amax€2) : O)]l

6.15 Minimum Eigenvalue

We transform a constraint containing the minimum eigergatua similar manner as
the maximum eigenvalue. For a scalar variabdend a matrixA, the constrainfA >g, tl
requires that be at most the minimum eigenvalue &f The matrixA — tl has eigenval-
ues{Amax—t,..., Amin — t}. Since the constraim — tl >s, O requires that each of these

eigenvalues be positive, it equivalently requires thag no larger than the minimum.
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We define this transformation as

TG Amin(er) >k, @ :0) =2 e =5, %1 1 ¢

wherel is the identity matrix with size compatible &. We see this transformation pro-

duces an equivalent feasible region by observing that

[T Z F Amin(€r) =R, & : O] =X Amin(f(X)) = 9(X)}
={x1 f(X) =r, 9(X) * I}
=[[;Zre =5, &=l :0]

=[7 (T2 F Amin(er) =g, & O)]
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6.16 Convex Quadratics

A constraint containing a convex quadratic on each side afi@guality may be trans-

formed into a second-order cone constraint. Notice thevofig

1-c'x-vy

X: 2U X >q 0

1+c'x+y

x:1-c'x—y2 V(2UXT(2UX) + (1+CcTx+7)?

X

(1-cTx=9)° 24X UTUX+ (1+c"x+9)%1-c"x—y > 0}

x

102 4X"UTUX+ (L+c'x+9) —(1-c'x=9)%1-c"x-y >0}

x

102 4x"UTUx+ 4" X+ 4y, 1-c'x -y > 0}

x:02 X' UTUx+c'x+y,1-c'x-y >0}

x

0> x'UTUx+ ch+y}

since @i+ b+c)?— (a—b-c)? = 4ab+4acand by observing that4c'x—y > —x"UTUx—

c'x—y > 0sinceUTU > 0. Thus, when we have a constraint of the form

X'Ax+a'x+a > X" Bx+b'x+p

andU™U =C =B-A>0,c=b-a, andy = 8- a, we can use the above transformation.

Unfortunately, our situation becomes slightly more comgied. Although we can de-
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termine when a function is quadratic, we define this propertgrms of all decision vari-

ables. For example, consider the function

X e R®?)y € R® i (Xyg + Xo1)? + 3(y1 + Y2)°

Our type system tells us that this function is quadratic \aitlepresentation

« c R2? R vedX)| |0 O O 0 O QfvedX)
€ Y€ -

where we denote the quadratic @odent byC. Unfortunately, this representation becomes
burdensome since it depends on the variallgsand X, even though the original repre-
sentation did not. In order to resolve this problem, we defimeew projection operator,
e : R™ — R" defined as

[7c(X)]k = X

wherem denotes the total number of rows@andn denotes the number of nonzero rows.
Then, label the nonzero rows 6f in order, from 1 ton. The functioné : {1,...,m} —

{1,...,n} represents an increasing, injective function that maps#feling to the original

158



index inC. When we compose this projection with vectorization, werabiate the result

asveg = nic o vec Using these projections, we define our quadratic as

veg (X
X e R?? ye R* %)

vee(y)

1100
T

1100

0 0 3 3

0 0 3 3

veg(X)

vee(y)

Where we call the smaller quadratic ¢édaent thereducedquadratic cofficient. At this

point, we must factor this céiécient intoU"U. Unfortunately, since this matrix may be

only positive semidefinite, we can not take the Choleskidiazation. Instead, we find the

compact singular value decomposition. the second-ord#ficient intoVIV'™ where

0

0
-1/V2
-1/ V2

6 0

0 2
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Thus, our factored, reduced quadraticfticeent is

0 0 -vV3 -3
U=

-1 -1 O 0

We define our factored, reduced quadratic as

Xll Xll
T
Xo1l |0 0 —=v3 -3 |0 0 -3 —+3|[Xx
X c ]R2><2’ y c ]R2><1 —
V1 -1 -1 0 0 -1 -1 0 0 V1

_Y2_ _Y2_

With this form, we can easily reformulate our quadratic m&econd-order cone constraint.
We define this process formally with the following rule. [eE + e, : (L, (@, &, A), L,R)

andl; X+ e @ (L, (8,b,B), L,R). Assume thaB — A >s, 0. Then, we define that

TIEre >R, :0)=0ZF| 2:Ux8 [20:0

1+8 x&+y

In addition, we define the following. Let the= 8 —a,c=b-a, andC = B—- A. Next, let
€ = veg(c) be a constant vector containing the nonzero elemendsAdsociated with this
vector, lete€ be the vertical concatenation of each variable that coomrdp to a nonzero

element oft. Similarly, letU be a constant matrix that corresponds to the factored, egdduc
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guadratic cofficient of C. Along with this matrix, lete’be the vertical concatenation of
each variable that corresponds to a nonzero rovés of

We prove this transformation behaves properly with theofeihg. Notice that

[[E+e =g, &: 0]
={x: vedX)" Avedx) + a'veqx) + a >g, veqX)' Bvedx) + b'vedx) + 3
={x: 0> vedqx)"Cvedx) + c'vedx) + y}
={x: 0> vee(X)"UTUveg(X) + veg(c)'veg(x) + y}

1 vee(c)'vee(x) - 7—

=31X: 2Uveg(X) >q 0

1+ veg(c)"veg(X) + v

1-¢"veg(x) -y

={X:| 2Uveg(x) |Za0

1+¢&"veg(x) +vy

1-¢Txé-y

=IDGEZF| 25Ux8 |Z@0:0

1+ x&+y

=7 ([T;Zre >k, &:0)]
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6.17 Non-Convex Quadratics

We transform nonconvex quadratics in a muchiestent fashion than convex quadrat-
ics. These constraints ardiiult to handle since they can define a convoluted and possibly
nonconnected feasible region. For example, the constxaiat 1 defines an integer con-
straint where the variabbemust be either 1 or1. In order to reformulate these constraints,
we lift each quadratic into a higher-dimensional space wiige quadratic becomes linear.

In other words, consider a constraint of the form

f(X) RX'Ax+a' x+a

Notice that we can rewrite this as

f(X) Rtr(xX"AX) +a' x+ a

sincex' Axis scalar. Using the commutative property of trace, we sae th

f(X) Rtr(AxxX) +a' x+ a

At this point, we linearize the problem into

f(X) Rtr(AX) +a'x+ «
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whereX = xx'. As a consequence of this action, we add @iclilt rank-1 constraint,
X = xx". Later, we relax this constraint into a semidefinite program
We define this transformation with the following. L&tX + &, : (L, (a,a,A), L, L, R).

Then, we specify that

TEreRe:0)= I X:S"Fe Rtr(A+X) +aT «&+a : O,

CEX:S"EX=xsX 1O

In addition, we make the following definitions. We defiAgo be the reduced quadratic
codficient of sizemandato be the reduced linear ceient. In additiongrepresents the
vertical concatenation of each variable that correspomdsionzero element af

Since we add an auxiliary variable, we must show that thar@ideasible region is a
projection of the reformulated region. Let: ([Tr.; Dx) X S™ — [k, Dk be a projection

defined by

[« W)k = Yk
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fork=1,...,n. Then, we see that

[T;ZrF e Re : o] =(x: f(X) Rvedx)" Avegx) + a'vedx) + o}

=X, X : f(me(X, X)) RvedX)" Avedx) + a'veqXx) + a}

=% X : (% X)) Rvea(X) Avea(X) + &' veq(X) + o)

=me{X, X f(me(x X)) Rtr(AX) + a"veg(X) + @, X = veg(X)vec(x))
(% X 1 flre(x X)) Rtr(AX) + aTveg(X) + ajn
(X, X: X =vea(X)veau(X)"}

[EX:S"Fe Rtr(A«X)+ & «é+a: O,

CEX:S"EX=xsX 10

=y [T (;ZreRe Q)]

In a similar manner, we can define one additional transfaomddy reversing the left and

right hand sides. Since equality is symmetric, this musegatie an equivalent problem.
As a final note, this transformation generally makes a prabigore dificult to solve.

However, we can relax the rank-1 constraint into a much eésim using the next trans-

formation.

6.18 Symmetric Rank-1 Constraints

Symmetric rank-1 constraints represent an extremefycdit class of constraints to

optimize over. Fortunately, we can relax them into a semmitefconstraint. The strength
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of this relaxation depends on many factors. In fact, thiaxalion could be extremely
weak. Nevertheless, it has proved useful in many cases.

Our strategy consists of relaxing a constraint of the f&m xx", whereX = X7, into
X >s, xX'. The Schur Complement theorem tells us that

A BT
A>s_ 0andC >s, BA'B" = >s. 0

B C
whereA >, 0 denotes thah must be positive definite. Therefore, we can relax our oalgin
constraint into

1 X'
Zs, 0

X X

We codify this process with the following rule

whenT; X + e : {(c, p,m,0 ,’]‘” ;t} and| denotes the identity matrix. Although this pro-

cess does not generate an equivalent feasible region, wihaek behaves correctly by
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observing that

[Mzre=exel: o] ={x: f(x = 99X}

c {x: f(%) zs, 9099}

I g7
=4X: >S+
g(x)  f(x
=(IZF >3+ 0:¢

As a final note, since equal is symmetric, we can apply thisssaamsformation by revers-

ing the left and right hand sides.

6.19 +1 Integer Variables

We find plus-minus one integer domains in a number of grapbrétie problems. For
example, the max-cut problem uses this domain to divide éngces of a graph into two
sets. Instead of handling these variables directly, we rearstorm them into a non-convex
quadratic equality constraink’> = 1. Once we obtain this form, we can relax it into a

semidefinite program.

166



We define this transformation with the following rule

7 (T + min eover {x: d}f ™, xq 1 {-1, 1™, {x : d}_g,, st (€}?)

=T+ min e over {X: d}i ™", xq : R™", {x : d}i_y,, st (e}, G; = 1™

We see that this transformation does not change the soloyiobserving that

[T F min eover (x: dif ™, xq : {1, 1™, {x: dig,, St {e)7]

min, 1)
q-1 n
=3 where A= {H Z)k} x {1, 1}MNa x { I Z)k}
k=1 k=0g+1
B= {xe S,}IS
min, 1)
q-1 n
where A = {H Z)k} x RM*Ma % { I1 Z)k}
— k=1 k=g+1
B= {xe Si}isﬂ
2 1M
{Xqii - 1}”‘

=[T + min eover {x: dif™, xq : R™™, {x: dljLq, st (e}, DG; = 1"

|[‘7~ (F Fmin eover {x: dji ", X 1 {=1, 1™ (x: dp_,, st {e}is)]l

whereS; denotes some arbitrary feasible region.
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6.20 Quartics

Earlier, we observed the use of quartics in the chained Eanfunction. In that exam-
ple, we transformed each quartic into a quadratic. We rethat trick with the following

example. Consider the constraint,

y>x

We can rewrite the termt* as ?)2. Then, we notice two facts. Firsk? > 0 for all x.
Second, the function — x? is increasing for all positive arguments. Therefore, we can

introduce a single auxiliary variable and rewrite this doaigt as the pair

In order to formally show this equivalence, let us define tetss

A= {x € ]_[ Dy 2 F(X) > (g(X))“}
k=1

B= {x €| | DoyeR: fmxy) 2 ¥y > (90l y)))z}
k=1

whereny : [Tees Dk X R = [T Dk and fry(2)]x = z for k = 1,...,n. We must show
thatA = n,B. In the forward direction, lek € A. We must find & such that ,y) € B.

Lety = (g(mx(X, y)))?. Certainly, we see that= (g(m(X, ¥)))? > (9(m«(X, y)))?. In addition,
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sincex € A, we see that

fr(xy) = £ 2 (@) = (@ V) =y 2 ¥

Therefore, X, y) € BandA C n,B. In the reverse direction, take, /) € B. We must show

thatx € A. Sincex,y — y? is increasing for positivg and @(r.(x, y)))?> > 0, we see that

f(x) = (. ¥)) = ¥ = (9(me(x, 1)))?)? = (9(¥)°

Thus,x € Aandn:B C A. Hence, we know thah = 7,B.

We define this transformation as

T(CZre > 6:0)= Iy R™¥ e >y o0,

Ly R™ry>e: o

We see this transformation behaves properly by noticing tha

[GErezr &:0]= {xe LD 1(®) = (@)
= m{xe Tl Doy e R: f(m(xy) = ¥y > (90rdx y)?
= m {xe [T Dy e R: fmdxy) 2 ¥?3n
{x e M Doy e R 1y = (lrx(x Y)Y
[Zy:R¥ re >y2: 0,
- Oy R™¥Mry>e: 0
= o |T(GZrezs &0
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6.21 Linearizing the Objective Function

The vast majority of the transformations that we have defogerate on a constraint
rather than on the objective function. Although many of gheansformations will work
in both situations, defining each case becomes cumbersoisteat, we note that we can
convert the objective function into a constraint by addirsgrgle variable. In other words,
we can convert the problem

e

into

XErR;QRy st y> f(x)

We must show these problems produce an equivalent soll@ix: be an optimal solution

to the first problem. Certainly, when= f(x*), the point {(x*), y) is feasible in the second
problem and the objective value remains the same. Thergf@eptimal value of the first
problem is greater than or equal to the second. In the redmsetion, let &', y*) be an
optimal solution to the second problem. We immediately baext remains feasible in the
first problem. Sincg* > f(x*), the optimal value of the second problem is greater than or
equal to the first. Thus, both problems have the same optiaha¢yv

We define this transformation as

7 (T - min e over {x: d}{! st {€}®)

=T F min Xo,1 over {X: d}f, X1 : R™! st (€)%, Xq41 =R, ©
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We see that this produces an equivalent problem since

[T + min e over {x: d}; st {e}7]

min, 19
=4 Wwhere A= rn[ Dy
k=1
B= {xe Si}?
nyTg\lmnB)’m
=41 where A= {rn[ Dk} X R
k=1
B= {yeSiPn{y: Y1 = flmx(y)}

= |[F F MiN Xn,1 over {X: d}, X1 : R st €}, Xo,1 =g, e]]

=7 (T + min e over {x: d}} st {e})]

n n
wherery : (H Z)k) X R — [] Dk is defined agy(y)k = Yk fork=1,...,n.
k=1 k=1
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Chapter 7

Case Studies

In the following section, we revisit the chained singulandtion and the max-cut prob-
lem. We show that we can correctly model and transform theselgms into more de-
sirable formulations. In addition, we assess the type+{dhgccapability our design by
demonstrating that we can prove convexity, polynomalitygl monotonicity in a wide va-
riety of situations.

We have implemented the language as a series of quotatitdma WiCaml using Camlp5.
Essentially, a quotation allows us to generate a piece odlis&ract syntax tree using our
custom defined grammar. Once we have the abstract syntaxweeean type-check and
manipulate the expression. Using quotations has two bengfisst, it allows us to quickly
generate and manipulate problems. Second, we avoid adtkéngufpport, bindings, and

other features within our language. Simply, we leverage@IGar these features.
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7.1 Max-Cut

Recall, we formulate the max-cut problem as
max 1Z](l P X )W
a2 4 Xi Xj )Wij

Let us define a small version of this problem in our languagdh thie following code

let mc= <:mp<
max 2.0%*(1.-x*y)+1.0*(1.-y*z)+3.0%(1l.-x%2)
over x in PlusMinusOne[1,1],
y in PlusMinusOne[1,1],

z in PlusMinusOne[1l,1] >>;;

Before we can transform the objective, we must linearizeptioblem and move the objec-

tive function into the constraints.
let mc=linearize mc;;
This generates the following problem

max 0

over x in PlusMinusOne[ 1,1 ], y in PlusMinusOne[ 1,1 ],
z in PlusMinusOne[ 1,1 ], _0® in Real[ 1,1 ]

st (2.1 * ([1.]1 - x *y) + [1.1 * ([1.] -y * 2)

+ [3.1 * ([1.] - x * z) > _0
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The variable_® denotes a new auxiliary variable. All auxiliary variablgars with an
underscore followed by a number. We use this conventiorestnasures that these names
do not conflict with the user-defined variables. This progmesponds directly to the

problem

max to
(xy.2e{-1,1}3,tpeR

st 2(1-xy)+(1-y2+3(1-x2 >t

Next, we eliminate each of the plus-minus one integer cairgs.

let mc=napply_mp pml mc;;

The functiornapply_mp repeatedly applies a transformation until normalizatiomother
words, it applies the transformation until the transforiorahas no &ect. This generates

the problem

max 0

over x in Real[ 1,1 ], y in Real[ 1,1 ], z in Real[ 1,1 ],

® in Real[ 1,1 ]

st (2.1 * ([1.] - x*y)+ [1.] * ([1.] -y * 2z)
+ [3.]1 * ([1.] - x * z) > _0
[ 1, 1D°{2.D = [1.]
l[1,1D°(2.D = [1.]
(z[ 1, 1 D°(2.D = [1.]

174



This corresponds directly to the mathematical program

max to
(xy.zto)eR*

st 21-xyY)+(1-y2+3(1-x2 >t

X2 =1
2:1
Z=1

Next, we lift each nonconvex quadratic into a linear constraith the command
let mc=apply_mp (nonconvex_quad ‘Left) mc;;

The functionapply_mp applies a transformation to each constraint. This prodtives

problem

max _0
over X in Real[ 1,1 ], y in Real[ 1,1 ], z in Real[ 1,1 ],
_0® in Real[ 1,1 1, _1 in Symmetric[ 3 1],
_2 in Symmetric[ 1 ], _3 in Symmetric[ 1 ],
_4 in Symmetric[ 1 ]
st trace([®. -1. -1.5; -1. 0. -0.5; -1.5 -0.5 0.] * _1) +
[6.] >= _0
dA={&C1,1]; {yl1,1]; 201,11} *
{x[ 1, 11 {y[l1,11;2z[1, 11}

trace([1.] * _2) = [1.]
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2=x[1,1]1*&[1,11)
trace([1.] * _3) = [1.]
B=yl1,11*ll, 11
trace([1.] * _4) = [1.]

4=z[1,1]1*@[1,11])

This program corresponds directly to the problem

max to
(X,y,Lto,t2,t3,t4)€]R7,t1€S3

st tri]l-1 o0 -—-5|t]+6>0

»—1.5 -5 0
T

ty = [x y z] [x y Z
tr(t;) =1

t, = xX'

tr(ts) = 1

ts=yy'

tr(ty) =1

t, = z7

At this point we notice that we have been wasteful. We havedhiced three more vari-

ables than necessary; t3, andt,. Each of these variables correspondt 1 ti2,, andtyss
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respectively. In other words, it is possible to reduce théemaatical program into

max to
(xY:zto)eR7,t;€S3

st tr{l_1 o -—5|t|+6=>0

-15 -5 0

i . )
ool
ti1=1
tip=1
tizz=1

This problem occurs since we apply the lifting procedure doheconstraint separately.
Since we do not coordinate each transformation, redundardbtes may arise. Unfortu-
nately, eliminating this problem provedidltult. It requires us to define a global nonconvex
guadratic transformation that considers the entire prablas a result, we may be forced
to live with this redundancy. Despite thisfidltulty, we complete our reformulation by

relaxing each rank-1 constraint into a semidefinite comdtreith the command

let mc=apply_mp (lowrank ‘Right) mc;;

This generates the following program

max _0
over X in Real[ 1,1 ], y in Real[ 1,1 ], z in Real[ 1,1 ],
_0® in Real[ 1,1 ], _1 in Symmetric[ 3 ],
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_2 in Symmetric[ 1 ], _3 in Symmetric[ 1 ],
_4 in Symmetric[ 1 ]
st

trace([0®. -1. -1.5; -1. 0. -0.5; -1.5 -0.5 0.] * _1) +
[6.] >= _0

. dxf1, 11 {yl1,11;z[1, 11" _1}
>=S [0. 0. 0. 0.; 0. 0. 0. 0.; 0. 0. 0. 0.;

0. 0. 0. 0.]

trace([1.] * _2) = [1.]

{[1.] xL 1, 11)"; _2} >=S [0. 0.; 0. 0.]

trace([1.] * _3) = [1.]

{[1.] L 1, 11)"; -3} >=S [0. 0.; 0. 0.]

trace([1.] * _4) = [1.]

{[1.1 (z[ 1, 1 1)’; _4} >=S [0. 0.; 0. 0.]

This corresponds to the problem

max to
(XY.zto.t2,t3,t4)€R7 t1€S3

st trll -1 0o -5|t|+6>0

-15 -5 0

-
T >s, O

W



Thus, we have successfully generated a linear semidefiragggom from our original for-
mulation. Although we find our relaxation to be less thanmpti we have successfully
derived one possible relaxation to dfabult problem.

7.2 Chained Singular Function

In the following discussion, we consider the simplest gasgproblem containing the

chained singular function

min
(Y, X1,X2,X3,X4)€R®

sty > (X + 10%)? + 5(Xz — X4)? + (X2 — 2X3)* + 10(X; — 10x,)*

We represent this problem in our language with
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let csf= <:mp<
min y
over x1 in Real[l,1], x2 in Real[1l,1], x3 in Real[1,1],
x4 in Real[1,1], y in Real[1,1]
st y >= (x1+10.%x2)"2.+5.%(x3-x4)"2.+

(x2-2.%x3)74.+10.%(x1-10.%x4)"4. >>;;

This yields the program

min y
over x1 in Real[ 1,1 ], x2 in Real[ 1,1 ],
x3 in Real[ 1,1 ], x4 in Real[ 1,1 ],
y in Real[ 1,1 ]
st y >= ((x1 + [10.] * x2)"([2.]) + [5.1 * (x3 - x4)"([2.]) +
(x2 - [2.] * x3)°([4.]) + [10.] * (x1 - [10.] *

x4)"([4.1))

We notice this problem contains two quartics embedded igdnstraint. In order to reach

them, we must expand the problem with the command

let csf=napply_mp (apply_mp (expand_ineq ‘Right)) csf;;

This yields the program

min y
over x1 in Real[ 1,1 ], x2 in Real[ 1,1 ], x3 in Real[ 1,1 ],
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st

x4 in Real[ 1,1 ], y in Real[ 1,1 ], _® in Real[ 1,1 ],
_1 in Real[ 1,1 ], _2 in Real[ 1,1 ], _3 in Real[ 1,1 1,
_4 in Real[ 1,1 ], _5 in Real[ 1,1 ], _6 in Real[ 1,1 ],
_10 in Real[ 1,1 ]

y >= (L0 + _1)

_0 >= (2 + _3)

_2 >= (.5 + _6)

_5>= (x1 + [10.] * x2)°([2.1)

_6 >= [5.1 * _10

_10 >= (x3 - x4)7([2.]D)

3 >= (x2 - [2.] * x3)7°([4.1)

_1 >=[10.] * _4

_4 >= (x1 - [10.] * x4)"°([4.1)
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This corresponds to the problem

(y,m,tir)QIquaeRS

st y>2th+ty
to=>t+13
th >t +tg
ts > (X1 + 10xy)2
ts > Stip
t10 > (X3 — Xs)°
tz3 > (Xo — 2%3)*
t; > 10k,

ty > (Xl - 10X4)4

At this point, we notice that we have exposed all the quar#issa result, we can remove

them with the command
let csf=apply_mp quartic csf;;
This produces the following program

min y

over x1 in Real[ 1,1 ], x2 in Real[ 1,1 ], x3 in Real[ 1,1 ],
x4 in Real[ 1,1 ], y in Real[ 1,1 ], _® in Real[ 1,1 ],

1 in Real[ 1,1 ], _2 in Real[ 1,1 ], _3 in Real[ 1,1 ],

4 in Real[ 1,1 ], _5 in Real[ 1,1 ], _6 in Real[ 1,1 ],
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_10 in Real[ 1,1 ], _17 in Real[ 1,1 ], _18 in Real[ 1,1 ]
st y >= (L0 + _1)

0 >= (L2 + _3)

_2>= (5 + _6)

_5>= (1 + [10.] * x2)°([2.1)

_6 >= [5.] * _10
_10 >= (x3 - x4)"([2.1)
_3>= (177 ([2.D
_17 >= (x2 - [2.] * x3)°([2.])
_1 >=[10.] * _4

_4 >= (C18)7°([2.1)

_18 >= (x1 - [10.] * x4)"([2.])
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This coincides the with problem

(V. ,tr)rellillqgeﬂ{5

St y>th+ty
to>t+1t3
th>ts+tg
ts > (X, + 10%y)?
tg > St1o
t1o > (X3 — X4)°
ts > t7,
t17 > (X2 — 2X3)?
t; > 10t
ty >ty

tig > (X — 10%y)?

At this point, we must make a decision. Ultimately, we wishr@ansform each convex
guadratic into a second-order cone constraint. We canresting@loy this transformation
now, or we can contract the problem then transform. For oupgmes, we try both and
compare the results. If we transform the convex quadraieg we use the following

command
let csf=apply_mp convex_quad csf;;

This generates the program
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min y
over x1 in Real[ 1,1 ], x2 in Real[ 1,1 ], x3 in Real[ 1,1 ],
x4 in Real[ 1,1 ], y in Real[ 1,1 ], _0 in Real[ 1,1 ],
_1 in Real[ 1,1 ], _2 in Real[ 1,1 ], _3 in Real[ 1,1 1,
_4 in Real[ 1,1 ], _5 in Real[ 1,1 ], _6 in Real[ 1,1 ],
_10 in Real[ 1,1 ], _17 in Real[ 1,1 ], _18 in Real[ 1,1 ]
st y >= (L0 + _1)
0 >= (L2 + _3)
_2>= (5 + _6)
{f1.] - (f-1.* = 501, 17; {fz.] * [-1. -10.] *
xif 1, 11 =x2[ 1, 1]} [1.]1 + ([-1.D" %
S[1, 113 >=Q [0.; 0.; 0.]
_6 >= [5.] * _10
{f1.1 - (-1.1>° * 180 1, 1 1; {f2.] * [-1. 1.1 *
{x3f1, 1] ;x40 1, 11} [1.] + ([-1.D *
_100 1, 1 ]} >=Q [0.; 0.; 0.]
{f1.1 - (-1.>° * 301, 11; {f2.] * [1.] *
1701, 17 [1.] + ([-1.1)° * _3[ 1, 1 ]}}
>=Q [0.; 0.; 0.]
{f1.] - (-1.>° * 17 1, 1 1; {f2.1 * [-1. 2.1 *

{x2[ 1, 1] ; x301, 11} [1.] + ([-1.1D7 %
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_17C 1,

113} >=Q [0.; 0.; 0.]

_1 >=[10.] * _4

{f1.] - (-1.>° * 401, 11; {[2.] * [1.] *

_18[ 1,

>=Q [0.;

1.1 - (-1.1>° * 180 1, 11; {f2.] * [-1. 10.] *

{xi[ 1,

_18[ 1,

115 [b.] + ([-1.1)" * _4[ 1, 11}}

0.; 0.]

1 ] ; X4[ 1 ’ 1 ]}; [1-:] + ([—1-])’ ¥

113} >=Q [0.; 0.; 0.]
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This program matches the problem

AS ,tir)relIqugelRF’
st y>to+1 to=>1t + 13
th>ts +tg tg > Stig
t; > 10k,
_ 1+ts 1+t
2(=X1 — 10%) | Z@ 0 |2(=x5 + x4)| Za O
1-t5 | | 1-tw
-1 + tg- — 1+t
2t7 | Za 0 2(—% + 2x3)| Za 0
»1—@_ » 1-1t7
>1 + t4— » 1+t
2t15 | Z@ 0 2(=%1 + 10x4) | Z@ O
»1—&_ » 1-ts

Thus, we have generated a nice extremely-sparse secoaddamde program. Unfortu-
nately, we have added 13 new decision variables. Thus, tbiseps has been wasteful.
Alternatively, before we employ this transformation, we @@ntract the system with the

command

let csf=napply_mp (contract_ineq ‘Left) csf;;

This generates the program
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min y

over x1 in Real[ 1,1 ], x2 in Real[ 1,1 ], x3 in Real[ 1,1 ],
x4 in Real[ 1,1 ], y in Real[ 1,1 ], _4 in Real[ 1,1 ],
_5 in Real[ 1,1 ], _6 in Real[ 1,1 ], _17 in Real[ 1,1 ],
_18 in Real[ 1,1 ]

st _5>= (x1 + [10.] * x2)°([2.])
_17 >= (x2 - [2.] * x3)°([2.])
4 >= (L18)7([2.D
_18 >= (x1 - [10.] * x4)"([2.])
y >= (5 + .6+ C17)7°([2.]) + [10.] * _4

_6 >= [5.] * (x3 - x4)"([2.])

This representation matches the problem

(mmjgglkRS
St t5 > (X + 10%y)?
t17 > (X2 — 2X3)?
ty >t
tig > (Xg — 10x4)?

y>ts+tg +t5, + 10t

te > 5(X3 — Xu)?
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Notice that we have eliminated eight decision variableswéier, also note that we could

potentially eliminatey, ts, andts within the constraint

y > ts+tg + t5;, + 10t

but did not. This illustrates a weakness within our typing aontraction rules. The func-
tiony, Xt t5 + tg + t§7 + 10t, is not monotonic irall variables since it contains the term
t2.. However, it is monotonic itty, ts, andts. Thus, if we want to correctly eliminate these
variables, we must make an addition to our type system. ddsté monitoring whether
a function is monotonic in all variables, we must keep tratkhe monotonicity in each
variable. Despite this éficulty, we can still transform this problem into a secondenrd

cone program with the command
let csf=apply_mp convex_quad csf;;
This produces the following program

min y

over x1 in Real[ 1,1 ], x2 in Real[ 1,1 ], x3 in Real[ 1,1 1,
x4 in Real[ 1,1 ], y in Real[ 1,1 ], _4 in Real[ 1,1 ],
_5 in Real[ 1,1 ], _6 in Real[ 1,1 ], _17 in Real[ 1,1 ],
_18 in Real[ 1,1 ]

st {r1.1 - (f-1.1’ = 51, 11; {[2.] * [-1. -10.] *

{xifC 1, 1] x201, 11} [1.] + ([-1.1D7 %
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S[1, 113 >=Q [0.; 0.; 0.]

1.l - (f-1.* = 1701, 115 {f2.] * [-1. 2.] *
fx2[ 1,11 ;x3[1, 1]} [1.]1+ ([-1.D" ¥
1701, 1 13 >=Q [0.; 0.; 0.]

{f1.] - (-1." = 401, 1 15 {[2.] * [1.] *

_18[ 1, 1 71; [1.] + ([-1.1D” * _4[ 1, 1 13}
>=Q [0.; 0.; 0.]

{f1.] - (f-1.1>" = _180 1, 1 1; {[2.] * [-1. 10.] *
{xif1, 1] ;x40 1, 11}; [1.] + ([-1.D" *
181, 1 13} >=Q [0.; 0.; 0.]

{f1.] - (f-1.; 10.5; 1.5 1.7 = {y[ 1, 11; {401, 1 13
{501, 1]; 601, 11} {[2.] * [1.] *
171, 171; [1.] + ([-1.; 16.; 1.; 1.1 =
fyf1,11; {41, 1]; {501, 11;

60 1, 1 1}}}}} >=Q [0.; 0.5 0.]

{[1.] - C[-1.1D” * e[ 1, 1 1; {[2.]1 * [-2.2360679775

2.2360679775] * {x3[ 1, 11; x4[ 1, 1 1}; [1.] +

([-1.1D7 * e[ 1, 11} >=Q [0.; 0.; 0.]
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This corresponds to the problem

AS ,tir)T;IiRnloeRf; )
1+ts 1+t
st 2(=% — 10%)| Z@ O 2(—Xo + 2X3)| Za 0
1-t5 | | 1-ty
_1 + t4_ _ 1+1tg
2ty | Z@ 0 2(—x + 10x4) | Z@ O
11—ty | 1-s
-1+y—10t4—t5—t6— - 1+tg
27 > 0 |2(- VBxs + VBx4)| Za 0
»1—y+10t4+t5+t6_ » 1-1t

Hence, we have successfully generated a linear secondemnae program from the chained-
singular function. As a final note, this problem highlighteegossible challenge when em-
ploying transformations during the modeling process. Depey on what order we expand,
transform, and contract a constraint we arrive #fiedent transformations. These formula-
tions may possessfierent properties. However, by automating these transfioons we

can quickly check and determine which formulation is bestfparticular application.
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7.3 Type Checking

In the following discussion, we give a two short examplestd type-checker and
explore the accuracy of its analysis.

We begin with a simple functior, y — (x* + y?)°. Of course, we recognize this as the
two-norm of the vertical concatenation wfandy. Thus, the result must be convex . We

represent this function in our language with

let sigma=[ <:var< x in Real[l,1] >> ; <:var< y in Reall1l,1] >> 1];;

let twonorm= <:exp< (x"2.+y"2.)72. >> ;;

Then, we type-check the expression with the command
let _=type_expr sigma twonorm;;

This yields the result

# - : Type_mathprog.texpr =

TModel ([[(‘Convex, ‘Bottom, ‘Bottom, ‘Real)]], 1, 1, ‘Symmetric)

In other words, we assert that we have specified a convexitumeith an unknown poly-
nomality and monotonicity.

This example highlights one of the strengths of our analyAsan alternative to our
approach, we could simply catalog the convexity and monoityrof each function such
as addition, exponentiation, etc. Then, we know that thetfan x — f(g(x)) is convex

whenf is convex, increasing argis convex. However, notice that the function the function
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X +— x> is not convex. In fact, this function is concave for> 0. Thus, this alternative
scheme can not correctly assert the convexity of this foncti
In a similar manner, we can express the Frobenius norm of axméth the following

command

let sigma=[ <:var< x in Real[5,3] >> 1;;

let frobnorm= <:exp< (trace(trans(x)*x)) 0.5 >>;;

After we type check the result, we see that

- : Type_mathprog.texpr =

TModel ([[(‘Convex, ‘Bottom, ‘Bottom, ‘Real)]], 1, 1, ‘Symmetric)

Thus, we can assert the convexity of this function. This gdandemonstrates that we
correctly type dificult expressions such asans(x)*x. Recall, we must represent the
type of this expression with a matrix of properties. Therereafter taking the trace and

square root of the result, we prove convexity.
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Chapter 8

Conclusions

During our discussion, we have accomplished the followige have developed a
grammar suitable for representing a broad class of mathesmhptograms. Next, we have
designed a type system which allows us to constructivelygpvoperties about our prob-
lem. Based on this structure, we have developed a systerm@drgies which give an
accurate mathematical depiction of our language. Thisdatian has allowed us to spec-
ify a series of transformations that manipulate our probléfmally, we have concluded
our discussion by considering thredtdrent examples.

The grammar specifies the internal structure of our langudge have found that a
reduced version of lambda calculus that does not contaitreab®ns, but does include
constants, allows us to be surprisingly expressive. Thipkcity has been somewhaffset
by the complexity of our types. Nonetheless we have foursldbmplexity necessary to
accurately depict the structure of a program.

The type system allows us to automatically characterizenanematical properties of
our problem. We have found that the most interesting typuigsroccur during function

application. This application allows us to combine varsdnd constants into more com-
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plicated functions. Itis at this point where we determirertimthematical properties of the
resulting composition. In practice, this reduces to caialg the diferent scenarios that
can occur.

The semantics give the mathematical characterization olamguage. We have found
the key to this process has been not to view operations suatdison as a function that
maps two concrete numbers to another. Rather, we view eaciida as a composition.
In other words, we view addition as a function that acceptsftmctions as its arguments,
then produces another function where we add the two argwtegether. This allows us to
establish a direct connection between our types, whiclesgmt mathematical properties,
and our expressions. Once we define our semantics, we pranesess of our language.
This gives us confidence that our type system accuratelyctieihie mathematical proper-
ties of our problem.

We have used transformations as our primary tool for takohgaatage of the under-
lying structural properties of our problem. In order to slifypthis process, we have es-
tablished a system of transformations that expand andaxirttie problem. These trans-
formations allow us to expose many of the problem’s hiddeucsiral features. Once we
expose these features, we can reformulate the problem mtwracomputable form.

Our three examples have been chosen to demonstrate theifglolThe max-cut prob-
lem demonstrates the necessity of transformations from detimy perspective. Simply,
the semidefinite relaxation appears nothing like the oalgiarmulation. Thus, asking a

user to manually manipulate the problem runs the risk obahicing errors. Second, the
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chained singular function demonstrates the necessityagiram analysis during program
manipulation. Although this problem contains many congpradratic functions, they are
not presented in a nice canonical form. Thus, we must aseehiir presence during our
program analysis. Finally, the two and Frobenius norms daestnate the power of our type
system. Systems such as CVX and YALMIP use a much simplemsetvehich can not

prove the convexity of these functions. While our system aercomplicated, it provides

us with more flexibility.

8.1 Future Work

Our ultimate goal lies in extending these techniques to iggépeirpose codes. In other
words, we believe that we can prove whether a function wriitteC or Fortran is convex,
polynomial, monotonic, or possesses some other mathexhaticperty. Certainly, our

analysis becomes more complicated. For example, consideotitine

float polynomial(float x,int n){
float y=1;
for(int i=0;i<n;i++)
y*=X;

return y;

Depending on the value of the problem may be linear, quadratic, or neither. Regasdle
we know this function represents some sort of polynomialusTtwe don’t expect that
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we can prove a certain property in all cases. Rather, weueetleat we can prove these
properties in many dierent, common situations.

Once we can prove properties about a general routine, we raagform it. This be-
comes especially interesting when generalizing the expamsd contraction transforma-
tions. Essentially, this amounts to decomposing a routiteeseveral pieces which expose
structure. This work is closely related to compiler optiatians. However, instead of
transforming a routine so that it runs faster, we desigrsfamations that alter the math-
ematical properties.

Each of these developments forces us to enrich the typensysis routines become
more complicated, we require additional information toreotly classify their properties.
For example, if we could guarantee that the variadteO, we could assert that the function
X — 1/xis convex. Which properties we analyze depends on the ateiof the problem.
Nonetheless, we have established a flexible typing schenwhwhktends to other proper-
ties.

Within combinatorial optimization, we have establishe@aes of transformations that
allow us to automatically relax an integer program into aislefinite program. For exam-
ple, we can apply the same techniques used to transform them@roblem to the graph
partitioning problem. While these relaxations frequemfiye poor bounds, their overall
utility remains unknown. Simply, generating these releet has been so prohibitive in
the past, that researchers have been unable to compretigrestplore the accuracy of

these relaxations. It may be that these relaxations areswédld toward branch and bound
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algorithms. However, we must make generating these prabfameasier before we can
adequately explore this possibility.

Within global optimization, these techniques show prongsapplicability. One com-
mon technique to global optimization involves approximgteach routine by a piecewise
linear function. This results in an integer program thatragimates the true problem. We
can use our transformational techniques to automaticellie this formulation.

This same idea applies to problems within robust optimmratiOne possible robust
formulation of a linear program results in a second-ordeegarogram. Similarly, a robust
formulation of a second-order cone program results in adefnite program. We can use
our methods to automatically derive each of these fornrati

Finally, we should not restrict ourselves to only considgmmathematical programs.
Discovering and exploiting hidden structure within a pshlhas direct implications to
differential equations, dynamical systems, and other matheahatodels. In the end, our
goal lies in developing techniques that allow us to analyze ansform each of these

problems.
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