The Automatic Construction and Solution of a Partial
Differential Equation from the Strong Form*

Joseph Yount*

Institutt for informatikk
Universitetet i Bergen
joseph.young@ii.uib.no

Abstract. Inthe lastten years, there has been significant improveamehgrowth
in tools that aid the development of finite element methodsdving partial dif-
ferential equations. These tools assist the user in tremgig a weak form of
a differential equation into a computable solution. Despitedla/ancements,
solving a diferential equation remains challenging. Not only are themaypos-
sible weak forms for a particular problem, but the most a&t®uor most fficient
form depends on the problem’s structure. Requiring a usget®rate a weak
form by hand creates a significant hurdle for someone whorstatels a model,
but does not know how to solve it.

We present a new algorithm that finds the solution of a padtférential equa-
tion when modeled in its strong form. We accomplish this bplgpg a first
order system least squares algorithm using triangulaieBpatches as our shape
functions. After describing our algorithm, we validate oesults by presenting a
numerical example.

1 Introduction

The variety of algorithms used to solve a partidtetiential equation has been both an
asset as well as a burden. On one hand, we have an assortneatritenfiely sophisti-
cated tools that allow us to solve a diverse set of problemgh® other, the heteroge-
neous nature of these algorithms makes it challenging igegeneral modeling tool.
Within the realm of finite element methods, there has beesiderable progress to-
wards this goal. Modeling tools such as deal.ll [1], FEni@S3], FreeFEM [4], GetDP
[5], and Sundance [6] allow the user to specify the weak fofadifferential equation
by hand. Then, given a specific kind of element, these totheeassist in or automate
the construction of the linear system that arises from tkerdtization.

In spite of their usefulness, these tools assume that thefrpossesses the technical
expertise to find the weak form of affrential equation. Unfortunately, this can be a
difficult task. Ideally, we would like a system that can transfohe original strong
form of the diferential equation into a computable solution. This wouldvala user
with far less technical knowledge to solve a problem thamiisantly possible. While it
is doubtful that such a perfect mechanism exists for @ledéntial equations, we focus
on a system that can achieve this goal for a relatively bréessof problems.

* This research was financed by the Research Council of Notwaygh the SAGA-geo project
** Special thanks to Magne Haveraaen for his suggestions addrge.

Specifically, we automate a first order system least squéyestam using triangu-
lar Bézier patches as our shape functions. Neither ouceladithe straightforward least
squares algorithm [7, 8] nor our choice of Bézier patchesique [9—11]. Nonetheless,
we combine these pieces in such way that we can automatertbection and solution
of any polynomial diferential equation where every function can be adequatgisoap
imated by a surface composed of several Bézier patchesifidiudes all smooth func-
tions as well as, in a practical sense, some discontinucdifuins. We do not intend
nor claim that this system will provide the best possiblaigoh in all cases. Simply,
it provides a smooth solution given relatively little antédgl work by the user. In this
way, we view it as a tool that allows an end user to rapidly gtyqie a problem and
then determine whether further investigation into an aliive algorithm is necessary.

2 A Calculus for Bézier Patches and Surfaces

The key to this method is the manipulation of surfaces comgas Bézier patches. In
the following section, we introduce and develop a calcutugtese surfaces.

2.1 Basic Definition

Let us define théth Bernstein polynomial of degrdeover thejth simplex within the

sett asb'f,j’t “RP 5 R
K [.
oy = (DTN TN > Ofor alli
il {0 otherwise
wherel € IN8+1' [1l = k, andT;j(x) denotes the solutiopof the (p + 1) x (p + 1) linear

system

212 ... Zpy _ X
11... 1 1

wheret; € RP*P = (7, ...,z,,1) andz denotes a corners of the simplgxBased on
these polynomials, we form Bézier patches by taking the suen all possible polyno-
mials of degre&. We form a surface by summing over all possible simplices.

2.2 Sums, Negation, Subtraction, and Multiplication

Our core manipulations include the sum, negation, suli@cand multiplication of
patches. Assume we have two patchfeandg, defined over the same simplex where

f:Za.b,kl g:Z,&b'l‘z.
[1=kq [=kz

Whenk; = ky, we find the sunf + g by simply adding the corresponding ¢beients.
However, when the degreedidir, we must elevate the degree of one of the patches until

they match. Without loss of generality, assukae- k,. Then, let

] ()
AP

(I =) > Ovi

where|l| = k;. Then, we have that [12—-14]

g= Z,Blb:(z= Z'}’Ib:q-

Il=kz [N=ke

In a similar manner, in order to negate a patch, we simply tecihie coéicients.
Then, in order to subtract one patch from another, we nefatsdcond patch and add
it to the first.

Another useful manipulation is the product between twidedént Bézier patches
which is equal to [12, 14]

h= Z ’)/|b:(1+k2
“|:k1+k2

where
by B

- (k1+k2)
1l = ki, l1+l2

Il2] =
=11+

2.3 Derivatives

Next, we give the directional derivative in the directionf a Bézier patch as [12—-14]

[Z @ blk,,»,tJ W)= > yb i

=k IM=k-1

where

oM | — T =
= @b ﬁr={g[Ti(h)]'l =

~ otherwise’

In addition,p describes the length af g denotes théth canonical vectob! e Jt(x) =
for all xwhenl —g contains negative indices, aﬂT@(x) denotes the solution to the Ilnear

system
212 ... Zpy _ X
11... 1Yo
wheret; € RP*XP = (z,...,2,,). This is the same transformation &g except that

the right hand side includes a 0 in the final element rather thdn other words, the
derivative of a Bézier patch is simply a Bézier patch ofréegpne lower.

2.4 Smoothness

Although a single Bézier patch is smooth andfetientiable, a surface composed of
many patches may not befiirentiable nor continuous between patches. In order to
stitch these patches together, we leverage the blossone d@dmstein polynomials.
This introduces a set of linear constraints on thefitdents where we can tune the
amount of smoothness between patches.

We compute the blossom of théh Bernstein polynomial ofdegrder)L,—,t : 1‘[}‘:1 RP —
R, through the recurrence relation

p+1
br,j,t(xl, Co X)) = Z[T(Xl)]ib:(_e“j,t(Xz, ')
i1

where we definé?’j’t(x) =1 for all x andB:"-’t(x) = 0 for all xwhenl contains negative
indices. Next, let us consider two simplices, defined by traersr ands, that share

a boundary. The face that defines this boundary requinesints. Thus, without loss

of generality lets,.; denote the single point not needed to define this boundary. Fo
example, given the triangulation

the pointss; ands, define the boundary whilg remains unneeded. Then, the boundary
between the Bézier patches defined over the simptigasl s is q times continuously
differentiable when [13, 14]

alS:Zafrﬁllf’r’t(sl.""’sl’&""’&""’sp+1$"'$sp+l)
|

I I2 Ips1

for all | wherel,,1 < gqanda, andas denotes the cdkcients of the Bézier patch over
the simplices andsrespectively.

2.5 Symbolic Codficients

When we use Bézier surfaces within dfdiential equation, some déieients are con-
stant whereas others are symbolic. As a result, we requirechamism to track our
symbolic variables. Fortunately, each manipulation wendeéibove simply forms a
new Bézier surface where the new fiagents are polynomials of the old. Thus, assume
we haven unknown variables;. We represent each dbeient by a tupled, a, A, ...)
wherea is a constantais a vectorAis a matrix, and higher order terms are represented
as tensors. In this manner, the actual value of thistadent is

a+(@X)+ (A, X)+...

Therefore, we must also define operations such as additibtrastion, and multipli-
cation on symbolic cd&cients. We define addition as

(o,a,A...)+(B8,b,B,...)=(e+B,a+b,A+B,...)

multiplication of linear terms as
(. 8)(8.b) = (ap. ab + pa, (ab" + ba")/2)

and the other operations analogously.

3 Algorithm

In the following section, we describe our algorithm useddive the diferential equa-
tion. We describe this process in three steps. First, werdpose the problem into a first
order system. Second, we replace all functions with theizi®& surface equivalents.
Third, we construct and solve the least-squares problerfis. iifolves combining all
functions together using our calculus defined above, iateyy the resulting surfaces,
and solving the final optimization problem.

3.1 Decomposition Into a First Order System

As with most least squares approaches, we decompose odemraiio a first order
system. In the straightforward least squares algorithig,ishnot necessary, but yields
many benefits such as reducing the condition nhumber of thé diptamality system
[7,8]. We emphasize that there are an infinite number of waydecompose most
problems and choosing one particular scheme may have tseoeét the other. Our
decomposition method is very simple and simply demonstitaiat this decomposition
is possible to automate.

Our scheme mirrors the trick used to decompose an ordin#igreltial equation
into a system of first order equations. Let us considgharder PDE,

F(x,u,D"u,...,D™u) =0

whereq; is a multiindex inINg. We construct a graph where we label each node,by
for || < k, and connect two nodes anda; when||a; —ajll = 1. Thus, we connect two
nodes if they dier by a single index. Further, we only allow nodeshena < «; for
someq; where< denotes pointwise inequality. By its construction, thiagr must be
connected and contain a spanning tree. The spanning treg @dwour decomposition

F(X’ u, D(Yl_ﬂluﬂl, ey de_ﬁmUﬁm) = 0 D(S_yuy — u(s'

In the first equality, the constagf is a label wherey; > B and bothe; andg; are
connected in the spanning tree. The second equality mudtfbohkll labelss andy
such thap; > 6 > y and boths andy are connected in the spanning tree. Finally, we
replace any instance of by u.

For example, consider the probleBt’u + Du + D%u = 0. The spanning tree
generated by the problem is

Thus, according to this decomposition, we would rewriteoblem as

Dloulo + D10U01 + D01U01 =0 Dlou = Ujo D°1u = Uop1.-

3.2 Approximating Non-Bézier Surfaces

Our algorithm requires that all functions be Bézier suefacTherefore, all non-Bézier
surfaces must be approximated. In order to accomplishwigigorce the error in the ap-
proximation to be orthogonal to the Bernstein polynomialsdito construct our Bézier
patches. This leads to the system of equations generated by

It]

. K K = K
Z Z Q/” <b|,j,t$ br’i't>L2(Q) - <f’ br~j3t>L2(.Q)

=1 1=K

forall || = kand all 1<] < |t|. The domairR is a square domain that encompasses the
domain of the dierential equation. After solving, the variakielefines the cdécients
of a Bézier surface that approximaties

3.3 Constructing the Least Squares Problem

Given a first order decomposition, we rewrite a system fiedential equations
Fi(x,u, D*u,...,D*u) =0 onQ Gj(x,u,D"u,...,Du) = 0 onoQ

as the least squares problem

muinz IFi(x, u, D%, ..., D“mu)||fz(9) + Z IGj(x, u, D™y, ..., D“mu)||fz((m).
[j

We have chosen thie? norm since we implement the straightforward least squdres a
gorithm. From a constructive point of view, we require a ndhat uses our algebra
on Bézier surfaces. As long as we restrict ourselves toghkenumbers, this includes
all WP norms for an integek and evenp. As a result, it may be possible to auto-
mate a more complicated least-squares algorithm as lortgadbéres to these norms.
However, we do not explore this idea further within this pape

Next, we replace all non-Bézier surfaces with Bézier atefapproximations. We
also discretizes using Bézier surfaces as our shape functions. Théic@mmnts for each
of these surfaces uses our symbolic scheme from above. tagieeof our unknown co-
efficients, initially all terms are zero except for the lineameavhich is thath canonical
vector,g, wherei denotes the index of that unknown ¢beent.

Once we have made this substitution, we use our calculuseaieBpatches from
above to combine all patches into a single patch. In othedsyore simplify all sub-
traction, addition, multiplication, negation, andfdrentiation operations including the
squaring of the problem due to thé norm. Since we require this simplification, we
focus solely on polynomial éfierential equations composed of these operations. In the
end, we are left with the optimization problem

It]

It -
%nL{Z > pl,,-(x)bﬁj,t]+ fog [Z >, q|,;(x)bh,-,t]

=1 11=k; =1 1=k

wherep; ; andq ; are polynomials whose cfiteients are still represented using our
symbolic scheme. Then, we integrate away all the Bézidases and obtain a polyno-
mial r based on these symbolic dheients. Finally, we add stitching constraints based
on the blossoming scheme described above. Thus, our cangtailem has the form

minr(x) stAx=0
XeR"

whereA is a matrix generated by including all possible stitchingstoaints. As a note,
we require the dferentiability between patches to be equal to the highestrateriva-
tive in the problem. Even though we decompose our problemfirgt order form, we
can not guarantee convergence unless all functions corfmtme original space of
functions. For example, if we solve Poisson’s equatiin= f, we require two deriva-
tives between each patch.

In the end, we have a linearly constrained polynomial progria the case of a
linear diferential equation, this yields a linearly constrained gatid program.

4 Numerical Experiments

In order to experimentally verify the convergence of our moet, we solve Poisson’s
equation in two dimensions on the unit square

Ugx + Uy = X,y > —87% cos(Zrx) sin(2ry) on [0, 1] x [0, 1]
u= XYy sin(2ry) whenx=0orx=1
u=0wheny=0o0ry=1

The solution to this problem is the functiorwhereu(x, y) = cos(2rx) sin(2ry).

We solved the problem formulated as both a first order systemedl as an unde-
composed problem using the original formulation. In botkesa we used fourth order
Bézier surfaces. The table below summarizes the relatioe i& these solutions as well
as the condition number of the KKT conditions

First Order System| Original Formulation
Subdivisions$ Error | Rate| « Error |[Rate «

1/6.00e-1 - |6.02e+3|6.43e-1 - |1.84e+3
2|4.03e-10.5745.19e+3|2.85e-11.17/5.57e+ 3|
4(1.18e-11.77|1.79e+4{1.88e-1.6008.21e+4
8 - - - 4.30e-22.13/1.28e+6

We do not have results for the first order system on an eigld sobdivided surface
since we ran out of memory. Although a better implementationld greatly alleviate

the problem, this highlights that the symbolic manipulati@are memory intensive. As
a result, decomposing the problem into a first order systgmifgiantly increases the
amount of memory required. In spite of this drawback, thenoeéseems to converge.

5 Conclusion

We have presented an algorithm that takesfedintial equation modeled in the strong
form and automatically produces a solution. It accompBghés by applying a first or-
der system least squares finite element method. As our shapédns, we use surfaces
composed of triangular Bézier patches. We use these amscbecause their special
properties allow us to combine all functions in théfeliential equation into a single
Bézier surface whose cfiients are simply polynomials of our unknown variables.
This allows us to produce a linearly constrained polynomiaigram which, when
solved, produces our solution.

Certainly, this algorithm will not work in all cases. Howey# provides a mech-
anism that produces a solution with a minimal amountfédre Even in cases when
the true solution contains features that af@dilt to model, we can use this method to
quickly produce a rough approximation to the true solution.

References

1. Bangerth, W., Hartmann, R., Kanschat, G.: deal.ll-a ggmrpose object-oriented finite
element library. ACM Transactions on Mathematical Sofe&8(2) (August 2007)

2. Dupont, T., Héfman, J., Johnson, C., Kirby, R., Larson, M., Logg, A., Sd®tt,The FEniCS
project. (PREPRINT 2003-21) (2003)

3. Logg, A.: Automating the finite element method. Sixth inSchool in Computational
Mathematics (March 2006)

4. Hecht, F., Pironneau, O., Hyaric, A.L., Ohtsuka, K.: Feee-+. www.freefem.org Second
Edition, Version 2.24-2-2.

5. Dular, P., Geuzaine, C., Henrotte, F., Legros, W.: A ganemvironment for the treatment
of discrete problems and its application to the finite elemneethod. IEEE Transactions on
Magnetics34(5) (September 1998) 3395-3398

6. Long, K.: Sundance 2.0 tutorial. Technical Report SAN®2@793, Sandia National Lab-
oratory (July 2004)

7. Bochev, P.B., Gunzburger, M.D.: Finite element methddsast-squares type. SIAM Re-
view 40(4) (December 1998) 789-837

8. Bochev, P.B., Gunzburger, M.D.: Least-Squares: Finitenent Methods. Springer (2009)

9. Zheng, J., Sederberg, T.W., Johnson, R.W.: Least squat®ds for solving dierential
equations using Bézier control points. Applied Numerlathematics (48) (2004) 237-252

10. Awanou, G., Lai, M.J., Wenston, P.: The multivariaterspmethod for scattered data fitting
and numerical solution of partialf@rential equations. In Chen, G., Lai, M.J., eds.: Wavelets
and Splines: Athens 2005. Nashboro Press (2006) 24-74

11. Schumaker, L.L.: Computing bivariate splines in scattelata fitting and the finite-element
method. Numerical Algorithm48 (2008) 237—260

12. de Boor, C.: B-form basics. In Farin, G., ed.: Geometrindiling: Algorithms and New
Trends. (1987)

13. Farin, G.: Triangular Bernstein-Bézier patches. Cate Aided Geometric Design 3 (1986)
83-127

14. Prautzsch, H., Boehm, W., Paluszny, M.: Bézier and Ba8Fechniques. Springer (2002)

