
The Automatic Construction and Solution of a Partial
Differential Equation from the Strong Form⋆

Joseph Young1⋆⋆

Institutt for informatikk
Universitetet i Bergen

joseph.young@ii.uib.no

Abstract. In the last ten years, there has been significant improvementand growth
in tools that aid the development of finite element methods for solving partial dif-
ferential equations. These tools assist the user in transforming a weak form of
a differential equation into a computable solution. Despite these advancements,
solving a differential equation remains challenging. Not only are there many pos-
sible weak forms for a particular problem, but the most accurate or most efficient
form depends on the problem’s structure. Requiring a user togenerate a weak
form by hand creates a significant hurdle for someone who understands a model,
but does not know how to solve it.
We present a new algorithm that finds the solution of a partialdifferential equa-
tion when modeled in its strong form. We accomplish this by applying a first
order system least squares algorithm using triangular Bézier patches as our shape
functions. After describing our algorithm, we validate ourresults by presenting a
numerical example.

1 Introduction

The variety of algorithms used to solve a partial differential equation has been both an
asset as well as a burden. On one hand, we have an assortment ofextremely sophisti-
cated tools that allow us to solve a diverse set of problems. On the other, the heteroge-
neous nature of these algorithms makes it challenging to design a general modeling tool.
Within the realm of finite element methods, there has been considerable progress to-
wards this goal. Modeling tools such as deal.II [1], FEniCS [2, 3], FreeFEM [4], GetDP
[5], and Sundance [6] allow the user to specify the weak form of a differential equation
by hand. Then, given a specific kind of element, these tools either assist in or automate
the construction of the linear system that arises from the discretization.

In spite of their usefulness, these tools assume that their user possesses the technical
expertise to find the weak form of a differential equation. Unfortunately, this can be a
difficult task. Ideally, we would like a system that can transformthe original strong
form of the differential equation into a computable solution. This would allow a user
with far less technical knowledge to solve a problem than is currently possible. While it
is doubtful that such a perfect mechanism exists for all differential equations, we focus
on a system that can achieve this goal for a relatively broad class of problems.

⋆ This research was financed by the Research Council of Norway through the SAGA-geo project
⋆⋆ Special thanks to Magne Haveraaen for his suggestions and guidance.

Specifically, we automate a first order system least squares algorithm using triangu-
lar Bézier patches as our shape functions. Neither our choice of the straightforward least
squares algorithm [7, 8] nor our choice of Bézier patches isunique [9–11]. Nonetheless,
we combine these pieces in such way that we can automate the construction and solution
of any polynomial differential equation where every function can be adequately approx-
imated by a surface composed of several Bézier patches. This includes all smooth func-
tions as well as, in a practical sense, some discontinuous functions. We do not intend
nor claim that this system will provide the best possible solution in all cases. Simply,
it provides a smooth solution given relatively little analytical work by the user. In this
way, we view it as a tool that allows an end user to rapidly prototype a problem and
then determine whether further investigation into an alternative algorithm is necessary.

2 A Calculus for Bézier Patches and Surfaces

The key to this method is the manipulation of surfaces composed of Bézier patches. In
the following section, we introduce and develop a calculus for these surfaces.

2.1 Basic Definition

Let us define theIth Bernstein polynomial of degreek over the jth simplex within the
sett asbk

I, j,t : �p → �

bk
I, j,t(x) =

{(k
I

)

(T j(x))I [T (x)] i ≥ 0 for all i
0 otherwise

whereI ∈ �p+1
0 , |I| = k, andT j(x) denotes the solutiony of the (p + 1)× (p + 1) linear

system
[

z1 z2 . . . zp+1

1 1 . . . 1

]

y =

[

x
1

]

wheret j ∈ �
p+1×p

= (z1, . . . , zp+1) andzi denotes a corners of the simplexj. Based on
these polynomials, we form Bézier patches by taking the sumover all possible polyno-
mials of degreek. We form a surface by summing over all possible simplices.

2.2 Sums, Negation, Subtraction, and Multiplication

Our core manipulations include the sum, negation, subtraction, and multiplication of
patches. Assume we have two patches,f andg, defined over the same simplex where

f =
∑

|I|=k1

αIb
k1
I g =

∑

|I|=k2

βIb
k2
I .

Whenk1 = k2, we find the sumf + g by simply adding the corresponding coefficients.
However, when the degrees differ, we must elevate the degree of one of the patches until

they match. Without loss of generality, assumek1 > k2. Then, let

γI =

∑

|J| = k2

(I − J)i ≥ 0∀i

βJ

(
k2
J

)(
k1−k2
I−J

)

(
k1
I

)

where|I| = k1. Then, we have that [12–14]

g =
∑

|I|=k2

βIb
k2
I =

∑

|I|=k1

γIb
k1
I .

In a similar manner, in order to negate a patch, we simply negate the coefficients.
Then, in order to subtract one patch from another, we negate the second patch and add
it to the first.

Another useful manipulation is the product between two different Bézier patches
which is equal to [12, 14]

h =
∑

|I|=k1+k2

γIb
k1+k2
I

where

γI =

∑

|I1| = k1,

|I2| = k2,

I = I1 + I2

(
k1
I1

)

αI1

(
k2
I2

)

βI2
(
k1+k2
I1+I2

) .

2.3 Derivatives

Next, we give the directional derivative in the directionh of a Bézier patch as [12–14]





∑

|I|=k

αIb
k
I, j,t





′

(x)(h) =
∑

|Ĩ|=k−1

γĨb
k−1
Ĩ, j,t

(x)

where

γĨ =

∑

|I|=k

αIβĨ βĨ =

{

k[T 0
j (h)] i I − Ĩ = ei

0 otherwise
.

In addition,p describes the length ofx, ei denotes theith canonical vector,bk−1
I−ei , j,t

(x) = 0

for all x whenI−ei contains negative indices, andT 0
j (x) denotes the solution to the linear

system
[

z1 z2 . . . zp+1

1 1 . . . 1

]

y =

[

x
0

]

wheret j ∈ �
p+1×p

= (z1, . . . , zp+1). This is the same transformation asT j except that
the right hand side includes a 0 in the final element rather than 1. In other words, the
derivative of a Bézier patch is simply a Bézier patch of degree one lower.

2.4 Smoothness

Although a single Bézier patch is smooth and differentiable, a surface composed of
many patches may not be differentiable nor continuous between patches. In order to
stitch these patches together, we leverage the blossom of the Bernstein polynomials.
This introduces a set of linear constraints on the coefficients where we can tune the
amount of smoothness between patches.

We compute the blossom of theIth Bernstein polynomial of degreek, b̂I, j,t :
∏k

i=1�
p →

�, through the recurrence relation

b̂k
I, j,t(x1, . . . , xk) =

p+1∑

i=1

[T (x1)] ib̂
k
I−ei, j,t

(x2, . . . , xk)

where we definêb0
I, j,t(x) = 1 for all x andb̂k

I, j,t(x) = 0 for all x whenI contains negative
indices. Next, let us consider two simplices, defined by the cornersr ands, that share
a boundary. The face that defines this boundary requiresp points. Thus, without loss
of generality letsp+1 denote the single point not needed to define this boundary. For
example, given the triangulation

r1 r2

r3

s1

s2 s3

,

the pointss1 ands2 define the boundary whiles3 remains unneeded. Then, the boundary
between the Bézier patches defined over the simplicesr ands is q times continuously
differentiable when [13, 14]

αIs =

∑

Î

αÎrb̂
k
Î,r,t

(s1, . . . , s1
︸ ︷︷ ︸

I1

, s2, . . . , s2
︸ ︷︷ ︸

I2

, . . . , sp+1, . . . , sp+1
︸ ︷︷ ︸

Ip+1

)

for all I whereIp+1 ≤ q andαIr andαIs denotes the coefficients of the Bézier patch over
the simplicesr ands respectively.

2.5 Symbolic Coefficients

When we use Bézier surfaces within a differential equation, some coefficients are con-
stant whereas others are symbolic. As a result, we require a mechanism to track our
symbolic variables. Fortunately, each manipulation we define above simply forms a
new Bézier surface where the new coefficients are polynomials of the old. Thus, assume
we haven unknown variablesxi. We represent each coefficient by a tuple (α, a, A, . . .)
whereα is a constant,a is a vector,A is a matrix, and higher order terms are represented
as tensors. In this manner, the actual value of this coefficient is

α + 〈a, x〉 + 〈Ax, x〉 + . . .

Therefore, we must also define operations such as addition, subtraction, and multipli-
cation on symbolic coefficients. We define addition as

(α, a, A, . . .) + (β, b, B, . . .) = (α + β, a + b, A + B, . . .)

multiplication of linear terms as

(α, a)(β, b) =
(

αβ, αb + βa, (abT
+ baT)/2

)

and the other operations analogously.

3 Algorithm

In the following section, we describe our algorithm used to solve the differential equa-
tion. We describe this process in three steps. First, we decompose the problem into a first
order system. Second, we replace all functions with their B´ezier surface equivalents.
Third, we construct and solve the least-squares problem. This involves combining all
functions together using our calculus defined above, integrating the resulting surfaces,
and solving the final optimization problem.

3.1 Decomposition Into a First Order System

As with most least squares approaches, we decompose our problem into a first order
system. In the straightforward least squares algorithm, this is not necessary, but yields
many benefits such as reducing the condition number of the final optimality system
[7, 8]. We emphasize that there are an infinite number of ways to decompose most
problems and choosing one particular scheme may have benefits over the other. Our
decomposition method is very simple and simply demonstrates that this decomposition
is possible to automate.

Our scheme mirrors the trick used to decompose an ordinary differential equation
into a system of first order equations. Let us consider akth order PDE,

F(x, u,Dα1u, . . . ,Dαm u) = 0

whereαi is a multiindex in�p
0. We construct a graph where we label each node byα,

for |α| ≤ k, and connect two nodesαi andα j when‖αi−α j‖1 = 1. Thus, we connect two
nodes if they differ by a single index. Further, we only allow nodesα whenα � αi for
someαi where� denotes pointwise inequality. By its construction, this graph must be
connected and contain a spanning tree. The spanning tree gives us our decomposition

F(x, u,Dα1−β1uβ1, . . . ,D
αm−βm uβm) = 0 Dδ−γuγ = uδ.

In the first equality, the constantβi is a label whereαi ≻ βi and bothαi andβi are
connected in the spanning tree. The second equality must hold for all labelsδ andγ
such thatβi � δ ≻ γ and bothδ andγ are connected in the spanning tree. Finally, we
replace any instance ofu0 by u.

For example, consider the problemD20u + D11u + D02u = 0. The spanning tree
generated by the problem is

1,0

1,12,0

0,0
0,1

0,2

.

Thus, according to this decomposition, we would rewrite ourproblem as

D10u10+ D10u01+ D01u01 = 0 D10u = u10 D01u = u01 .

3.2 Approximating Non-Bézier Surfaces

Our algorithm requires that all functions be Bézier surfaces. Therefore, all non-Bézier
surfaces must be approximated. In order to accomplish this,we force the error in the ap-
proximation to be orthogonal to the Bernstein polynomials used to construct our Bézier
patches. This leads to the system of equations generated by

|t|∑

j=1

∑

I=|k|

αI j

〈

bk
I, j,t, b

k
Î, ĵ,t

〉

L2(Ω)
=

〈

f , bk
Î, ĵ,t

〉

L2(Ω)

for all |Î| = k and all 1≤ ĵ ≤ |t|. The domainΩ is a square domain that encompasses the
domain of the differential equation. After solving, the variableα defines the coefficients
of a Bézier surface that approximatesf .

3.3 Constructing the Least Squares Problem

Given a first order decomposition, we rewrite a system of differential equations

Fi(x, u,Dα1u, . . . ,Dαm u) = 0 onΩ G j(x, u,Dα1u, . . . ,Dαm u) = 0 on∂Ω

as the least squares problem

min
u

∑

i

‖Fi(x, u,Dα1u, . . . ,Dαm u)‖2L2(Ω) +

∑

j

‖G j(x, u,Dα1u, . . . ,Dαm u)‖2L2(∂Ω).

We have chosen theL2 norm since we implement the straightforward least squares al-
gorithm. From a constructive point of view, we require a normthat uses our algebra
on Bézier surfaces. As long as we restrict ourselves to the real numbers, this includes
all Wk,p norms for an integerk and evenp. As a result, it may be possible to auto-
mate a more complicated least-squares algorithm as long as it adheres to these norms.
However, we do not explore this idea further within this paper.

Next, we replace all non-Bézier surfaces with Bézier surface approximations. We
also discretizeu using Bézier surfaces as our shape functions. The coefficients for each
of these surfaces uses our symbolic scheme from above. In thecase of our unknown co-
efficients, initially all terms are zero except for the linear term which is theith canonical
vector,ei, wherei denotes the index of that unknown coefficient.

Once we have made this substitution, we use our calculus on B´ezier patches from
above to combine all patches into a single patch. In other words, we simplify all sub-
traction, addition, multiplication, negation, and differentiation operations including the
squaring of the problem due to theL2 norm. Since we require this simplification, we
focus solely on polynomial differential equations composed of these operations. In the
end, we are left with the optimization problem

min
x∈�n

∫

Ω





|t|∑

j=1

∑

|I|=ki

pI, j(x)bki
I, j,t




+

∫

∂Ω





|t|∑

j=1

∑

|I|=k̂i

qI, j(x)bk̂i
I, j,t





wherepI, j andqI, j are polynomials whose coefficients are still represented using our
symbolic scheme. Then, we integrate away all the Bézier surfaces and obtain a polyno-
mial r based on these symbolic coefficients. Finally, we add stitching constraints based
on the blossoming scheme described above. Thus, our complete problem has the form

min
x∈�n

r(x) st Ax = 0

whereA is a matrix generated by including all possible stitching constraints. As a note,
we require the differentiability between patches to be equal to the highest order deriva-
tive in the problem. Even though we decompose our problem into first order form, we
can not guarantee convergence unless all functions conformto the original space of
functions. For example, if we solve Poisson’s equation,∆u = f , we require two deriva-
tives between each patch.

In the end, we have a linearly constrained polynomial program. In the case of a
linear differential equation, this yields a linearly constrained quadratic program.

4 Numerical Experiments

In order to experimentally verify the convergence of our method, we solve Poisson’s
equation in two dimensions on the unit square

uxx + uyy = x, y 7→ −8π2 cos(2πx) sin(2πy) on [0, 1] × [0, 1]

u = x, y 7→ sin(2πy) whenx = 0 or x = 1

u = 0 wheny = 0 or y = 1.

The solution to this problem is the functionu whereu(x, y) = cos(2πx) sin(2πy).
We solved the problem formulated as both a first order system as well as an unde-

composed problem using the original formulation. In both cases, we used fourth order
Bézier surfaces. The table below summarizes the relative error in these solutions as well
as the condition number of the KKT conditions

First Order System Original Formulation
Subdivisions Error Rate κ Error Rate κ

1 6.00e-1 - 6.02e+3 6.43e-1 - 1.84e+3
2 4.03e-10.5745.19e+3 2.85e-11.175.57e+3
4 1.18e-1 1.77 1.79e+4 1.88e-1.6008.21e+4
8 - - - 4.30e-22.131.28e+6

.

We do not have results for the first order system on an eight time subdivided surface
since we ran out of memory. Although a better implementationwould greatly alleviate
the problem, this highlights that the symbolic manipulations are memory intensive. As
a result, decomposing the problem into a first order system significantly increases the
amount of memory required. In spite of this drawback, the method seems to converge.

5 Conclusion

We have presented an algorithm that takes a differential equation modeled in the strong
form and automatically produces a solution. It accomplishes this by applying a first or-
der system least squares finite element method. As our shape functions, we use surfaces
composed of triangular Bézier patches. We use these functions because their special
properties allow us to combine all functions in the differential equation into a single
Bézier surface whose coefficients are simply polynomials of our unknown variables.
This allows us to produce a linearly constrained polynomialprogram which, when
solved, produces our solution.

Certainly, this algorithm will not work in all cases. However, it provides a mech-
anism that produces a solution with a minimal amount of effort. Even in cases when
the true solution contains features that are difficult to model, we can use this method to
quickly produce a rough approximation to the true solution.

References

1. Bangerth, W., Hartmann, R., Kanschat, G.: deal.II–a general purpose object-oriented finite
element library. ACM Transactions on Mathematical Software 33(2) (August 2007)

2. Dupont, T., Hoffman, J., Johnson, C., Kirby, R., Larson, M., Logg, A., Scott,R.: The FEniCS
project. (PREPRINT 2003-21) (2003)

3. Logg, A.: Automating the finite element method. Sixth Winter School in Computational
Mathematics (March 2006)

4. Hecht, F., Pironneau, O., Hyaric, A.L., Ohtsuka, K.: Freefem++. www.freefem.org Second
Edition, Version 2.24-2-2.

5. Dular, P., Geuzaine, C., Henrotte, F., Legros, W.: A general environment for the treatment
of discrete problems and its application to the finite element method. IEEE Transactions on
Magnetics34(5) (September 1998) 3395–3398

6. Long, K.: Sundance 2.0 tutorial. Technical Report SAND2004-4793, Sandia National Lab-
oratory (July 2004)

7. Bochev, P.B., Gunzburger, M.D.: Finite element methods of least-squares type. SIAM Re-
view 40(4) (December 1998) 789–837

8. Bochev, P.B., Gunzburger, M.D.: Least-Squares: Finite Element Methods. Springer (2009)
9. Zheng, J., Sederberg, T.W., Johnson, R.W.: Least squaresmethods for solving differential

equations using Bézier control points. Applied NumericalMathematics (48) (2004) 237–252
10. Awanou, G., Lai, M.J., Wenston, P.: The multivariate spline method for scattered data fitting

and numerical solution of partial differential equations. In Chen, G., Lai, M.J., eds.: Wavelets
and Splines: Athens 2005. Nashboro Press (2006) 24–74

11. Schumaker, L.L.: Computing bivariate splines in scattered data fitting and the finite-element
method. Numerical Algorithms48 (2008) 237–260

12. de Boor, C.: B-form basics. In Farin, G., ed.: Geometric Modeling: Algorithms and New
Trends. (1987)

13. Farin, G.: Triangular Bernstein-Bézier patches. Computed Aided Geometric Design 3 (1986)
83–127

14. Prautzsch, H., Boehm, W., Paluszny, M.: Bézier and B-Spline Techniques. Springer (2002)

